OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B277–B282
« Show journal navigation

Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber

N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B277-B282 (2011)
http://dx.doi.org/10.1364/OE.19.00B277


View Full Text Article

Acrobat PDF (1242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results from the first gridless networking field trial with flexible spectrum switching nodes and 620 km of installed fibre links. Signals at 10G, 12.25G, 42.7G, DP-QPSK 40G, DP-QPSK 100G and 555G are generated, successfully transported and switched using flexible, custom spectrum allocation per channel. Spectrum defragmentation is demonstrated using integrated SOA-MZI wavelength converters. Results show error-free end-to-end performance (BER<1e-9) for the OOK channels and good pre-FEC BER performance with sufficient margin to FEC limit for the 40G and 100G coherent channels as well as for the 555G super-channel.

© 2011 OSA

1. Introduction

2. Gridless network scenario

3. Experimental setup and results

4. Channel filtering and spacing

Flexible allocation of bandwidth per channel requires considering individual spectral requirements (i.e. bit-rate and modulation format) and the filter shape of the devices used for (de)muxing. In an all-optical network successive filter stages may result in a reduced end-to-end bandwidth, which may cause signal distortions with an associated power penalty [13

13. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010). [CrossRef]

]. On the other hand, if the allocated bandwidth is too wide for the transported channel spectral resources are wasted. In order to evaluate the effect of narrow filtering a 42.7 Gb/s RZ channel was passed through a co-centered filter. The filter bandwidth is decreased from 160 GHz down to 40 GHz while the spectrum, eye and sensitivity of the output signal are observed. Results are presented in Fig. 4(a)
Fig. 4 (a) Filtering effects on 42.7 Gb/s RZ signal and (b) 10G SNR performance for varying channel spacings.
. As the filter bandwidth is reduced the edges of the signal spectrum are attenuated. This gradually closes the eye and introduces an increasing power penalty. A 0.9-dB penalty is observed at 100 GHz filter bandwidth increasing rapidly for narrower bandwidths.

Additional considerations are required if channels are to be tightly packed e.g. 10G at 12.5-GHz spacing [14

14. H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002). [CrossRef]

]. Here, highly selective filters are required to reduce inter-channel crosstalk. Figure 4(b) shows the performance of a 10G channel with an adjacent 10G channel at varying channel spacings demultiplexed using a WaveShaper as a filter with 10-GHz bandwidth. There is a flat region where the SNR (Q2) shows little variation, from 50 GHz down to around 25 GHz. The penalty at 20-GHz spacing is 1 dB and increases rapidly for narrower channel spacings. Such degradation greatly depends on the selectivity of the filter used for channel (de)multiplexing; thus, it may be improved by using steeper filters. However, packing channels closer together also increases the interaction between them and may give rise to non-linear impairments such as XPM and FWM, which also constrain channel spacing.

5. Conclusion

This paper presents results from the first gridless optical networking field trial with geographically scattered flexible-spectrum-switching nodes linked by 620-km of field installed fibres, and spectrum defragmentation functionality. We have successfully demonstrated flexible spectrum switching and transport of mixed traffic with different bit rates and modulation formats including 555G, coherent 100G and 40G, as well as intensity modulated and wavelength converted 10G and 40G signals with good end-to-end BER performance. All channels are switched and transported using custom spectrum slots to support varying bandwidth requirement and optimize utilization (e.g. 555Gb/s on a 650 GHz slot, 3 adjacent 10Gb/s signals with a 25GHz spacing).

Acknowledgments

This work is supported by the EC FP7, grant agreement No. 247674, STRONGEST and the EPSRC grant EP/I01196X: Transforming the Future Internet: The Photonics Hyperhighway. We would also like to thank Ciena, in particular, Tex Bennett, for their help and support to this work.

References and links

1.

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” 36th European Conference and Exhibition on Optical Communication (ECOC), 19–23 Sept. 2010.

2.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” 35th European Conference on Optical Communication, ECOC '09, 20–24 Sept. 2009.

3.

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” Optical Fiber Communication (OFC2010), 21–25 March 2010.

4.

J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation, transmission and coherent detection of 11.2 Tb/s (112×100Gb/s) single source optical OFDM superchannel,” OFC/NFOEC, 6–10 March 2011.

5.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 6–10 March 2011.

6.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

7.

N. Amaya, G. S. Zervas, B. Rahimzadeh Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conference and Exposition on Optical Communications, paper We.9.K.2, ECOC 2011.

8.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010). [CrossRef]

9.

WaveShaper, http://www.finisar.com/optical_instrumentation.

10.

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009). [CrossRef]

11.

M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011). [CrossRef]

12.

Y. Miyamoto, “4O-Gbit/s transport system: its WDM upgrade,” Optical Fiber Communication (2000), Vol. 3, pp. 323–325.

13.

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010). [CrossRef]

14.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002). [CrossRef]

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Backbone and Core Networks

History
Original Manuscript: November 2, 2011
Manuscript Accepted: November 8, 2011
Published: November 18, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, "Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber," Opt. Express 19, B277-B282 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” 36th European Conference and Exhibition on Optical Communication (ECOC), 19–23 Sept. 2010.
  2. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” 35th European Conference on Optical Communication, ECOC '09, 20–24 Sept. 2009.
  3. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” Optical Fiber Communication (OFC2010), 21–25 March 2010.
  4. J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation, transmission and coherent detection of 11.2 Tb/s (112×100Gb/s) single source optical OFDM superchannel,” OFC/NFOEC, 6–10 March 2011.
  5. T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 6–10 March 2011.
  6. D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).
  7. N. Amaya, G. S. Zervas, B. Rahimzadeh Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conference and Exposition on Optical Communications, paper We.9.K.2, ECOC 2011.
  8. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag.48(7), 62–69 (2010). [CrossRef]
  9. WaveShaper, http://www.finisar.com/optical_instrumentation .
  10. D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett.21(19), 1363–1365 (2009). [CrossRef]
  11. M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol.29(10), 1489–1499 (2011). [CrossRef]
  12. Y. Miyamoto, “4O-Gbit/s transport system: its WDM upgrade,” Optical Fiber Communication (2000), Vol. 3, pp. 323–325.
  13. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol.28(4), 557–598 (2010). [CrossRef]
  14. H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett.14(3), 405–407 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited