OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B75–B80
« Show journal navigation

10 GHz AlGaInAs/InP 1.55 μm passively mode-locked laser with low divergence angle and timing jitter

Lianping Hou, Mohsin Haji, John H. Marsh, and A. Catrina Bryce  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B75-B80 (2011)
http://dx.doi.org/10.1364/OE.19.000B75


View Full Text Article

Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a 10 GHz 1.55 μm all-active passively mode-locked laser based on a novel AlGaInAs/InP epitaxial structure with a three-quantum-well active layer and a passive far-field reduction layer. The device generated 1.06 ps pulses with a state-of-the-art timing jitter value of 194 fs (4-80 MHz), and a radio-frequency linewidth of 2 kHz, while demonstrating a low divergence angle (14.7° × 27.3°) with a twofold butt coupling efficiency to a flat cleaved single mode fiber, compared to the conventional five-quantum-well MLLs.

© 2011 OSA

1. Introduction

Monolithic mode-locked lasers (MLLs) are excellent candidates for generating short pulses for a range of applications, such as millimeter-wave signal generation and all-optical clock recovery. These applications require optical pulse trains with low phase noise and timing jitter [1

1. K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40GHz all-active mode-locked lasers,” IEEE Photon. Technol. Lett. 16(4), 975–977 (2004). [CrossRef]

]. Several factors degrade the timing jitter of MLLs, such as self phase modulation (SPM), which is a major factor that not only affect the timing jitter, but, in extreme cases, leads to severe degradation of the optical spectrum [2

2. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989). [CrossRef]

,3

3. F. Camacho, E. A. Avrutin, P. Cusumano, A. Saher Helmy, A. C. Bryce, and J. H. Marsh, “Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive waveguides made by quantum well intermixing,” IEEE Photon. Technol. Lett. 9(9), 1208–1210 (1997). [CrossRef]

]. On the other hand, recent work on fiber lasers has demonstrated that in order to reduce timing jitter, it is desirable to operate as close to the zero dispersion point as possible [4

4. L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, “The influence of cavity dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Baltimore, USA, Conference on lasers and Electro-Optics (CLEO) (2011), CTuA3.

]. However, operating at the zero dispersion point implies a high optical intensity (for the same pulse energy) and hence an increased SPM.

Furthermore, it is suggested in Henry’s linewidth formula for semiconductor lasers that increasing the round trip time can improve the timing jitter [5

5. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). [CrossRef]

], although MLLs with repetition frequencies below 100 GHz are relatively long devices (e.g. ~4 mm for a 10 GHz laser). Lasers with long all-active cavities may increase the level of SPM, which is known to lead to significant deteriorations in both the optical and mode-locked spectra [3

3. F. Camacho, E. A. Avrutin, P. Cusumano, A. Saher Helmy, A. C. Bryce, and J. H. Marsh, “Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive waveguides made by quantum well intermixing,” IEEE Photon. Technol. Lett. 9(9), 1208–1210 (1997). [CrossRef]

]. Also according to Henry’s theory, it is shown that these effects can be suppressed by reducing the cavity losses and increasing the saturation energy (Esat) which in turn can be achieved by reducing number of QWs. Recently, this has resulted in a timing jitter as low as 570 fs (4-80 MHz) for a 10 GHz passive MLL on an all-active quantum well (QW) structure [6

6. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance10 GHz all-active monolithic mode-locked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004). [CrossRef]

] and a −3 dB radio-frequency (RF) linewidth of 30 kHz for a 21 GHz MLL [7

7. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008). [CrossRef] [PubMed]

], which are currently the best results reported in the literature.

MLLs with narrow far-field patterns (FFPs) are highly desirable for simple, highly-yield optical alignment, as low divergence angles improve the coupling efficiency and impose less stringent tolerances in the alignment between the MLL and single-mode fiber (SMF). Recently we have demonstrated 40 GHz AlGaInAs/InP λ ~1.55 μm all-active QW MLLs with a small RF linewidth (25kHz) and low divergence angle based on a novel epitaxial structure which consists of a three-QW active layer incorporating a passive far field reduction layer (FRL) [8

8. L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011). [CrossRef] [PubMed]

]. The FRL’s purpose is to pull the guided mode slightly into the lower cladding, which results in an increased mode size d (d: transverse spot size which is defined as the distance from the beam axis to the position where the amplitude of the optical field is 1/e times the amplitude at the beam axis) with a reduced overlap with the QWs (ΓQW), leading to less SPM and a reduction in waveguide dispersion. This also has the additional benefit of reducing the internal loss αin by pulling the mode away from the upper p-cladding layer and reducing the far-field divergence of the output beam. As the free-carrier absorption in the p-cladding layer is the main contributor to the internal optical losses in strain-compensated multiple quantum-well (SC-MQW) lasers [9

9. D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 μm wavelength, SCH-MOW InGaAsP/lnP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett. 32(18), 1717–1719 (1996). [CrossRef]

]. In addition, the use of the FRL eliminates the need for overgrowth, which is applicable to AlGaInAs/InP-based lasers, and the stringent fabrication tolerance as required for that of slab-coupled optical waveguide lasers (SCOWL) [10

10. J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, “250 mW, 1.5µm monolithic passively mode-locked slab-coupled optical waveguide laser,” Opt. Lett. 31(2), 223–225 (2006). [CrossRef] [PubMed]

], so lasers can be fabricated as readily as conventional ridge waveguide devices.

In this work, we present a detailed discussion on the design and optimization of the FRL and calculate the associated internal loss which is in excellent agreement with the measured result. Furthermore, we extend the FRL concept from 40 to 10 GHz AlGaInAs/InP λ~1.55 μm passively MLLs, which in comparison has a longer cavity length that subsequently provides a lower threshold current density and lower associated spontaneous emission noise. In addition, the longer laser cavity results in a decrease of the spectral linewidth of each longitudinal mode [11

11. C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986). [CrossRef]

], and also enhances the four wave mixing process and associated phase correlation between modes through a reduced optical mode spacing [12

12. A. Shen, F. van Dijk, J. Renaudier, G. H. Duan, F. Lelarge, F. Pommereau, F. Poingt, L. Le Gouezigou, and O. Le Gouezigou, “Active mode-locking of quantum dot Fabry-Perot laser diode,” in IEEE 20th Int. Semiconductor Laser Conf. (2006), pp.153–154.

]. All these effects should lead to a further reduction of the RF linewidth during mode-locking operation of the 10 GHz MLL [13

13. I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29(4), 1081–1090 (1993). [CrossRef]

]. Using a MLL with a 10 GHz repetition frequency, we achieve a RF linewidth reduction of as little as 2 kHz and a corresponding timing jitter of 194 fs (4-80 MHz), which is to the best of our knowledge, the best results to date for passive QW MLLs.

2. Epilayer structure

Figure 1(a)
Fig. 1 (a) simulated effective index (neff) and (b) the overlap with the QWs as a function of FRL thickness for the different transverse mode.
shows the simulated effective index (neff) as a function of the FRL thickness for different spacer thicknesses (from 1.0 μm to 0.25 μm with a step of −0.25 μm) with their cut-off thickness for the second order mode, i.e., m = 2 at 0.11, 0.17, 0.29, and 0.52 μm correspondingly. For all the spacer cases, it was shown that as the FRL thickness increased, the ΓQW at m = 0 is dramatically decreased and the corresponding ΓQW at m = 1 is increased (Fig. 1(b)). For the first 3 cases, the fundamental and first order guided modes are shown in Fig. 2
Fig. 2 The optical intensity through the epilayer structure for various FRL configurations: (a) 0.11 μm FRL, 1.0 μm spacer, (b) 0.16 μm FRL, 0.75 μm spacer, and (c) 0.29 μm FRL, 0.50 μm spacer.
. It can be seen that as the FRL is widened and moved closer to the QW layer, the fundamental mode is widened and pulled into the lower cladding layer, thus reducing the overlap with the p-cladding layer. This reduces the losses resulting from free carrier absorption, because the absorption due to holes is higher than that due to electrons. If the FRL is too thin, the fundamental transverse mode size is increased by very little (Fig. 2(a)). However, if the FRL structure is made too thick, an unfavourable amount of the fundamental mode moves into the FRL, which considerably reduces the ΓQW value of the fundamental mode. Also, the first order mode is affected by the FRL in some structures leading to a significant overlap of the first order mode with the QWs (Fig. 2(c)) and results in a multi-mode output. Table 1

Table 1. Calculated Parameters of the Structures Simulated in Fig. 1

table-icon
View This Table
also lists the calculated optical confinement factors for the QWs, the p- and n- cladding layers (ΓQW, Γp, and Γn respectively). For calculating the internal losses, we use: αin = ΓQW·kMQW + Γp·kp + kn·kn, where kQW, kp, and kn are the absorption coefficients at λ = 1.55 μm in QWs, and in the p- and n-cladding layers, respectively [9

9. D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 μm wavelength, SCH-MOW InGaAsP/lnP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett. 32(18), 1717–1719 (1996). [CrossRef]

]. These values are: kQW = 35 cm−1 [14

14. I. Joindot and J. L. BEYLAT, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55 μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993). [CrossRef]

], kP = 22 cm−1 for p-InP with doping level p = 8.6 × 1017 cm−3, kn = 1 cm−1 in n-InP with doping level n = 1018 cm−3 [15

15. A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62(1), 198–202 (1983). [CrossRef]

]. This data also shows that p-cladding absorption is the main contributor to the internal losses. Taking into consideration both the maximization of the d/ΓQW value for the fundamental transverse mode and maintaining a single mode waveguide, the FRL consisted of 0.16 μm with a bandgap wavelength of 1.1 μm (In0.85Ga0.15As0.33P) placed 0.75 μm below the active region as shown in Fig. 2(b). The calculated internal loss for this structure is 8.4 cm−1 (Table 1). Moreover, the expansion of the cross-sectional area of the fundamental transverse mode leads to a reduction in the corresponding far-field, throughFourier transformation. A schematic of the complete epitaxial structure together with the corresponding conduction band diagram can be found in [8

8. L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011). [CrossRef] [PubMed]

].

3. Device structure and fabrication

The fabricated devices have a total length of 4,320 μm and consist of a gain section (4,230 μm) and an 80 μm long saturable absorber (SA). The isolation gap between the sections is 10 μm wide and provides electrical isolation in excess of 1.5 kΩ. The ridge waveguide is 2.5 μm wide and 1.65 μm high, i.e. the dry etching process stopped 200 nm above the 20 nm thick wet-etch stop layer, which not only protects the MQW active layer but also acts as a compromise between reducing the horizontal direction divergence angle and decreasing the threshold current. The laser fabrication process was described in [8

8. L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011). [CrossRef] [PubMed]

]. As a final step, the sample was cleaved into individual laser bars with both the SA facets and the gain facets left uncoated. The devices were mounted epilayer-up on a temperature controlled copper heat sink set at 20°C and tested under CW conditions.

4. Device characteristics

Passive mode-locking (ML) of the device was achieved by forward biasing the gain section (Igain) and reverse biasing the SA section (VSA). The purest 10 GHz ML with 100% modulation was obtained over a large bias range: VSA from −1.6 V to −3.2 V, and for Igain from 120 mA to 300 mA and above, which is shown in Fig. 4(a)
Fig. 4 (a) Measured map of ML regime of laser operation vs the Igain and VSA, and (b) FWHM of the autocorrelation trace vs the Igain for different VSA.
. The mesh region in Fig. 4(a) indicates second harmonic (20 GHz) ML regimes which can be explained by the model in [16

16. U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006). [CrossRef]

]. Figure 4(b) presents the evolution of the full width at half maximum (FWHM) of the autocorrelation (AC) trace as a function of both VSA and Igain, which was measured by second-harmonic-generation (SHG) autocorrelation. We note typical trends, i.e. pulses broaden with increasing Igain and shorten with increasing |VSA|. The shortest pulse width was observed at VSA = −2.8 V, which we attribute to a short SA recovery time, and for Igain = 142 mA, where the impact of SPM is weak. The period of the measured emitted pulse train was 99.3 ps (Fig. 5(a)
Fig. 5 (a) Measured autocorrelation pulse trains, (b) an isolated pulse fitting by a sech2 shape, (c) RF spectrum, (d) optical spectrum, and (e) SSB noise for Igain = 142 mA, VSA = −2.8 V.
), corresponding to the peak observed in the RF spectrum at 10.074 GHz. The autocorrelation width of an isolated pulse was 1.64 ps, which deconvolves to a 1.06 ps pulse duration assuming a sech2 pulse shape (Fig. 5(b)), and is much shorter than that reported in [6

6. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance10 GHz all-active monolithic mode-locked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004). [CrossRef]

] (8.4ps). A Lorentzian fitting of the RF spectrum gives a −3 dB linewidth of 2 kHz (with a 1 kHz resolution bandwidth (RBW)) (Fig. 5(c)). It should be stressed here that, to the best of our knowledge, such a narrow linewidth has never been obtained with a conventional QW MLL and is comparable to that obtained from a 17 GHz passive quantum-dot MLLs at a nominal wavelength of 1.55 μm [12

12. A. Shen, F. van Dijk, J. Renaudier, G. H. Duan, F. Lelarge, F. Pommereau, F. Poingt, L. Le Gouezigou, and O. Le Gouezigou, “Active mode-locking of quantum dot Fabry-Perot laser diode,” in IEEE 20th Int. Semiconductor Laser Conf. (2006), pp.153–154.

], and in comparison to the −3 dB RF linewidth of 25 kHz obtained in [8

8. L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011). [CrossRef] [PubMed]

], the results presented here confirm that increasing the cavity length leads to a reduction in the threshold current density (from 1.12 to 0.83 kA/cm2), which lowers the spontaneous emission noise and thus decreases the RF linewidth [11

11. C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986). [CrossRef]

]. The optical spectrum was centered at 1555.5 nm with a −3 dB bandwidth of 5.65 nm (Fig. 5(d)). The time-bandwidth product (TBP) of the pulse is equal to 0.74, which is larger than the transform-limited value (≈0.315). This is likely to be due to SPM in the gain section [2

2. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989). [CrossRef]

]. The phase noise trace hits the thermal noise floor at the offset frequency of 9 MHz [17

17. C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010). [CrossRef] [PubMed]

] (Fig. 5(e)). Using the expression for the integrated rms timing jitter in [18

18. F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 20(16), 1405–1407 (2008). [CrossRef]

] or extrapolating the trace in Fig. 5(e) from 9 MHz at the standard roll-off of −20 dBc/Hz per decade results in a timing jitter value of 194 fs (4-80 MHz), the lowest reported to date of any 10 GHz passive QW MLL.

5. Conclusion

In conclusion, a novel epitaxial laser wafer structure with a three-QW active layer incorporated with a passive FRL for the fabrication of 10 GHz passive AlGaInAs/InP MLLs has been designed with a significantly improved FFP, RF linewidth, and timing jitter. The far-field was as small as 14.7° × 27.3°, which doubled the coupling efficiency to a flat cleaved SMF. Sech2 pulses of 1.06 ps duration were generated at a repetition rate of ~10.0 GHz with a state-of-the-art timing jitter of 194 fs (4-80 MHz) and a RF linewidth of 2 kHz.

Acknowledgments

The authors would like to acknowledge financial support from EPSRC (project EP/E065112/1) and thank Dr M. Sorel for helpful discussions and Jehan Akbar for the FFP measurements.

References and links

1.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40GHz all-active mode-locked lasers,” IEEE Photon. Technol. Lett. 16(4), 975–977 (2004). [CrossRef]

2.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989). [CrossRef]

3.

F. Camacho, E. A. Avrutin, P. Cusumano, A. Saher Helmy, A. C. Bryce, and J. H. Marsh, “Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive waveguides made by quantum well intermixing,” IEEE Photon. Technol. Lett. 9(9), 1208–1210 (1997). [CrossRef]

4.

L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, “The influence of cavity dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Baltimore, USA, Conference on lasers and Electro-Optics (CLEO) (2011), CTuA3.

5.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). [CrossRef]

6.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance10 GHz all-active monolithic mode-locked semiconductor lasers,” Electron. Lett. 40(12), 735–737 (2004). [CrossRef]

7.

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008). [CrossRef] [PubMed]

8.

L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett. 36(6), 966–968 (2011). [CrossRef] [PubMed]

9.

D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 μm wavelength, SCH-MOW InGaAsP/lnP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett. 32(18), 1717–1719 (1996). [CrossRef]

10.

J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, “250 mW, 1.5µm monolithic passively mode-locked slab-coupled optical waveguide laser,” Opt. Lett. 31(2), 223–225 (2006). [CrossRef] [PubMed]

11.

C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986). [CrossRef]

12.

A. Shen, F. van Dijk, J. Renaudier, G. H. Duan, F. Lelarge, F. Pommereau, F. Poingt, L. Le Gouezigou, and O. Le Gouezigou, “Active mode-locking of quantum dot Fabry-Perot laser diode,” in IEEE 20th Int. Semiconductor Laser Conf. (2006), pp.153–154.

13.

I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29(4), 1081–1090 (1993). [CrossRef]

14.

I. Joindot and J. L. BEYLAT, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55 μm semiconductor lasers,” Electron. Lett. 29(7), 604–606 (1993). [CrossRef]

15.

A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62(1), 198–202 (1983). [CrossRef]

16.

U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38(4-6), 495–512 (2006). [CrossRef]

17.

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010). [CrossRef] [PubMed]

18.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 20(16), 1405–1407 (2008). [CrossRef]

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Waveguide and Opto-Electronic Devices

History
Original Manuscript: September 26, 2011
Revised Manuscript: October 26, 2011
Manuscript Accepted: October 26, 2011
Published: November 16, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Lianping Hou, Mohsin Haji, John H. Marsh, and A. Catrina Bryce, "10 GHz AlGaInAs/InP 1.55 μm passively mode-locked laser with low divergence angle and timing jitter," Opt. Express 19, B75-B80 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B75


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40GHz all-active mode-locked lasers,” IEEE Photon. Technol. Lett.16(4), 975–977 (2004). [CrossRef]
  2. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25(11), 2297–2306 (1989). [CrossRef]
  3. F. Camacho, E. A. Avrutin, P. Cusumano, A. Saher Helmy, A. C. Bryce, and J. H. Marsh, “Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive waveguides made by quantum well intermixing,” IEEE Photon. Technol. Lett.9(9), 1208–1210 (1997). [CrossRef]
  4. L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, and S. Diddams, “The influence of cavity dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Baltimore, USA, Conference on lasers and Electro-Optics (CLEO) (2011), CTuA3.
  5. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  6. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance10 GHz all-active monolithic mode-locked semiconductor lasers,” Electron. Lett.40(12), 735–737 (2004). [CrossRef]
  7. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express16(14), 10675–10683 (2008). [CrossRef] [PubMed]
  8. L. Hou, M. Haji, J. Akbar, B. C. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers,” Opt. Lett.36(6), 966–968 (2011). [CrossRef] [PubMed]
  9. D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly, “1.5 μm wavelength, SCH-MOW InGaAsP/lnP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett.32(18), 1717–1719 (1996). [CrossRef]
  10. J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, “250 mW, 1.5µm monolithic passively mode-locked slab-coupled optical waveguide laser,” Opt. Lett.31(2), 223–225 (2006). [CrossRef] [PubMed]
  11. C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol.4(3), 298–311 (1986). [CrossRef]
  12. A. Shen, F. van Dijk, J. Renaudier, G. H. Duan, F. Lelarge, F. Pommereau, F. Poingt, L. Le Gouezigou, and O. Le Gouezigou, “Active mode-locking of quantum dot Fabry-Perot laser diode,” in IEEE 20th Int. Semiconductor Laser Conf. (2006), pp.153–154.
  13. I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron.29(4), 1081–1090 (1993). [CrossRef]
  14. I. Joindot and J. L. BEYLAT, “Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55 μm semiconductor lasers,” Electron. Lett.29(7), 604–606 (1993). [CrossRef]
  15. A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth62(1), 198–202 (1983). [CrossRef]
  16. U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron.38(4-6), 495–512 (2006). [CrossRef]
  17. C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express18(21), 21932–21937 (2010). [CrossRef] [PubMed]
  18. F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited