## All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs |

Optics Express, Vol. 19, Issue 3, pp. 1945-1953 (2011)

http://dx.doi.org/10.1364/OE.19.001945

Acrobat PDF (1822 KB)

### Abstract

This article demonstrates theoretical design of ultracompact all-optical AND, NAND, OR, and NOR gates with two-dimensional nonlinear photonic crystal slabs. Compound Ag-polymer film with a low refractive index and large third-order nonlinearity is adopted as our nonlinear material and photonic crystal cavities with a relatively high quality factor of about 2000 is designed on this polymer slab. Numerical simulations show that all-optical logic gates with low pump-power in the order of tens of MW/cm^{2} can be achieved. These design results may provide very useful schemes and approaches for the realization of all-optical logic gates with low-cost, low-pump-power, high-contrast and ultrafast response-time.

© 2011 OSA

## 1. Introduction

1. Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. **18**(12), 1341–1343 (2006). [CrossRef]

2. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express **14**(21), 9879–9895 (2006). [CrossRef] [PubMed]

3. J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature **404**(6778), 579–581 (2000). [CrossRef] [PubMed]

4. Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. **94**(3), 030501 (2005). [CrossRef] [PubMed]

5. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. **42**(5), 303–304 (2006). [CrossRef]

6. L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. **37**(3), 1011–1018 (1998). [CrossRef]

7. Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express **13**(3), 1033–1038 (2005). [CrossRef] [PubMed]

8. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. **265**(1), 171–174 (2006). [CrossRef]

10. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B **23**(4), 684–691 (2006). [CrossRef]

11. D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B **24**(2), 283–294 (2007). [CrossRef]

16. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express **15**(15), 9287–9292 (2007). [CrossRef] [PubMed]

17. P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B **26**(1), 10–16 (2009). [CrossRef]

18. P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. **11**(8), 085203 (2009). [CrossRef]

19. J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. **48**(36), 6923–6927 (2009). [CrossRef] [PubMed]

20. A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A **79**(4), 043818 (2009). [CrossRef]

21. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express **17**(2), 552–557 (2009). [CrossRef] [PubMed]

22. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express **13**(7), 2678–2687 (2005). [CrossRef] [PubMed]

23. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature **431**(7012), 1081–1084 (2004). [CrossRef] [PubMed]

24. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. **85**(11), 1880–1882 (2004). [CrossRef]

25. M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. **95**(22), 221102 (2009). [CrossRef]

^{−12}esu) and their nonlinear response time is relatively long (in the order of nanoseconds), which restrict their practical applications on low pump power and ultrafast response time all-optical devices. Another popular nonlinear material is the π-conjugation organic polymer materials, which have more prominent nonlinear optical properties, such as large third-order nonlinear optical susceptibility (in the order of 10

^{−9}esu) and ultrafast nonlinear response time (in the order of femtoseconds). Furthermore, recent studies show that a larger third-order nonlinear susceptibility (in the order of 10

^{−6}to 10

^{−7}esu) can be easily obtained by adding some metal nanoparticles [26

26. Y. Wang, X. B. Xie, and T. Goodson 3rd, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. **5**(12), 2379–2384 (2005). [CrossRef] [PubMed]

27. X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. **94**(3), 031103 (2009). [CrossRef]

28. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics **2**(3), 185–189 (2008). [CrossRef]

29. X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. **86**(12), 121102 (2005). [CrossRef]

30. Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. **86**(15), 151102 (2005). [CrossRef]

32. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. **106**(8), 083102 (2009). [CrossRef]

30. Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. **86**(15), 151102 (2005). [CrossRef]

32. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. **106**(8), 083102 (2009). [CrossRef]

## 2. Design and nonlinear properties of 2D PhC slab cavities in Ag-polymer films

33. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. **65**(25), 3152–3155 (1990). [CrossRef] [PubMed]

35. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter **46**(17), 10650–10656 (1992). [CrossRef] [PubMed]

*a*is the lattice constant. The thickness of this slab is

36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. **181**(3), 687–702 (2010). [CrossRef]

37. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature **425**(6961), 944–947 (2003). [CrossRef] [PubMed]

*m*times the lattice constant. From these results, we find that the normalized frequency of cavity shifts to lower frequency and the quality factor gets larger with the increase of the cavity length along the y-axis. This result will be very useful for the design of multiple cavities to realize all-optical logic gates with various functions.

^{2}, the normalized resonant frequency of the defect mode shifts from 0.38008 to 0.37932 (

*c*is the speed of light in vacuum and

*a*is the lattice constant of the PhC. Here the transmission spectrum has also been normalized with respect to its peak value. If the lattice constant is

## 3. Principle and realization of all-optical logic gates

_{1}and I

_{2}are incident onto the upper surface of the PhC structure normally. Considering the experimental conditions that the area of PhC structures is less than

^{2}, while the pump lights are picosecond ultrashort pulses whose average pulse powers are in the order of 10 MW/cm

^{2}. The following designs of all-optical logic gates are all based on this consideration. Notice that polystyrene has an optical response time on the order of several femtoseconds, which is much faster than the pump pulse duration time (on the order of picoseconds) [30

30. Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. **86**(15), 151102 (2005). [CrossRef]

32. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. **106**(8), 083102 (2009). [CrossRef]

*f*

_{0}, while the resonant frequencies of the two cavities are

*f*

_{1}and

*f*

_{2}, respectively. Table 2 shows the principles of all-optical AND, NAND, OR, and NOR gates, respectively.

*f*

_{1}=

*f*

_{2}= 0.38008. The normalized frequency of the input signal light is set at

*f*

_{0}= 0.37932. At first, due to the frequency deflection between the input signal light and the cavity mode, the signal light is localized at the forbidden gap, and its transmission is as low as 1.9%. With the incidence of single pump light I

_{1}or I

_{2}, the refractive index of Ag-polymer increases, and the resonant frequency of cavity will shift to lower frequency. When the pump power is 22.5 MW/cm

^{2}, which makes the refractive index change by 0.2%, the nonlinear resonant frequency shifts to 0.3797. In this case, although the frequency deflection between the input signal light and the cavity mode become less, due to the narrow spectrum width, the transmission is still low, which is about 9.5%. Under the excitation of both pump lights I

_{1}and I

_{2}, the frequency of defect mode shifts to the frequency of the input signal light exactly, and the transmission reaches to 100%. Table 3 shows the truth table of the AND gate. Here, we should notice that in our design of all-optical logic gates, the transmission in each case is monitored at the output waveguide and calculated by Pade approximate method. And the transmission here is normalized to its peak value, not to the input signal light.

*f*

_{1}= 0.38008, Q = 1558) and L8-type (

*f*

_{2}= 0.37971, Q = 1765), respectively. The normalized frequency of the signal light is set at

*f*

_{0}= 0.37971, which is just the same with the resonant frequency of cavity 2. Without the pump lights, the input signal light will be coupled with cavity 2, and the transmission is nearly 100%. With single pump light I

_{1}or I

_{2}, the resonant cavity mode will shift to lower frequency. As a result, the resonant frequency of cavity 2 will deflect away from the frequency of the signal light, but the resonant frequency of cavity 1 will be nearer to the frequency of the signal light. When the pump power is 22 MW/cm

^{2}, the signal light will be coupled with cavity 1, and the transmission can also be 100%. If both of the pump lights I

_{1}and I

_{2}interact with the PhC structure, the resonant frequency of cavities will deflect the frequency of the signal light again, which makes the transmission decrease remarkably. The truth table of the NAND gate is shown in Table 4 .

*f*= 0.3806, Q = 1367) and L7-type (

_{1}*f*= 0.38008, Q = 1558) are adopted. The frequency of the signal light is

_{2}*f*= 0.37932, which is not resonant with any cavity. So, at first, the transmission of signal light is very low, only 1.9%, corresponding to the logic “0” of the OR gate. Under the excitation of single pump light whose power is 42.5 MW/cm

_{0}^{2}, the frequency of cavity 2 (

*f*) will shift to the frequency of the signal light (

_{2}*f*= 0.37932), and the transmission is 90.1%. With the incidence of two pump lights, the resonant frequency of cavity 1 (

_{0}*f*) shifts to

_{1}*f*, and the transmission from the output reaches 100%. The truth table of the OR gate is shown in Table 5 .

_{0}*f*

_{1}=

*f*

_{2}= 0.38008, Q = 1558). The frequency of the input signal light is set at

*f*= 0.38008, which is the same with the resonant frequency of the cavities. The transmission is as high as 100% without pump lights. Under the pump light, the resonant frequency of cavity will shift to lower frequency, and far away from the frequency of the signal light. When the pump power is 22.5 MW/cm

_{0}^{2}, the resonant frequency of the cavities shifts to 0.3797, and the transmission is 8.1% with single pump light excitation. The transmission will be lower with the interaction of two pump lights. Table 6 shows the truth table of the NOR gate.

## 4. Conclusion

^{2}has been sufficiently large to pump the logic gates. More logic function devices can be designed by our PhC structures. Because of the prominent nonlinear optical properties (large third-order optical nonlinear susceptibility and ultrafast nonlinear response time) and low-cost of compound Ag-polymer films, this work may be useful for designing and realizing devices that can find practical applications in all-optical integration, all-optical information processing and optical computing.

## Acknowledgement

## References and links

1. | Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. |

2. | Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express |

3. | J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature |

4. | Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. |

5. | J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. |

6. | L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. |

7. | Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express |

8. | T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. |

9. | V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. |

10. | T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B |

11. | D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B |

12. | D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B |

13. | D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. |

14. | I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. |

15. | I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. |

16. | Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express |

17. | P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B |

18. | P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. |

19. | J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. |

20. | A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A |

21. | A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express |

22. | M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express |

23. | V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature |

24. | F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. |

25. | M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. |

26. | Y. Wang, X. B. Xie, and T. Goodson 3rd, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. |

27. | X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. |

28. | X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics |

29. | X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. |

30. | Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. |

31. | Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. |

32. | Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. |

33. | K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. |

34. | R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. |

35. | S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter |

36. | A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. |

37. | Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature |

**OCIS Codes**

(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

(230.1150) Optical devices : All-optical devices

(230.5298) Optical devices : Photonic crystals

(230.3750) Optical devices : Optical logic devices

**ToC Category:**

Optical Devices

**History**

Original Manuscript: November 30, 2010

Revised Manuscript: December 28, 2010

Manuscript Accepted: January 6, 2011

Published: January 18, 2011

**Citation**

Ye Liu, Fei Qin, Zi-Ming Meng, Fei Zhou, Qing-He Mao, and Zhi-Yuan Li, "All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs," Opt. Express **19**, 1945-1953 (2011)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1945

Sort: Year | Journal | Reset

### References

- Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006). [CrossRef]
- Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006). [CrossRef] [PubMed]
- J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000). [CrossRef] [PubMed]
- Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005). [CrossRef] [PubMed]
- J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006). [CrossRef]
- L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998). [CrossRef]
- Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005). [CrossRef] [PubMed]
- T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006). [CrossRef]
- V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007). [CrossRef]
- T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006). [CrossRef]
- D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007). [CrossRef]
- D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26(10), 1918–1923 (2009). [CrossRef]
- D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010). [CrossRef]
- I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008). [CrossRef]
- I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).
- Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007). [CrossRef] [PubMed]
- P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009). [CrossRef]
- P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009). [CrossRef]
- J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009). [CrossRef] [PubMed]
- A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009). [CrossRef]
- A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009). [CrossRef] [PubMed]
- M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
- V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
- F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004). [CrossRef]
- M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009). [CrossRef]
- Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005). [CrossRef] [PubMed]
- X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009). [CrossRef]
- X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008). [CrossRef]
- X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005). [CrossRef]
- Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005). [CrossRef]
- Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009). [CrossRef]
- Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009). [CrossRef]
- K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990). [CrossRef] [PubMed]
- R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992). [CrossRef]
- S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992). [CrossRef] [PubMed]
- A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
- Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.