OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2381–2390
« Show journal navigation

Analytical expression and optimization of spatial acquisition for intersatellite optical communications

Xin Li, Siyuan Yu, Jing Ma, and Liying Tan  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2381-2390 (2011)
http://dx.doi.org/10.1364/OE.19.002381


View Full Text Article

Acrobat PDF (918 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In intersatellite optical communications it is important to obtain the most efficient performance of acquisition system with respect to acquisition time for a given probability. In this paper a novel approach to the analytical optimization of spatial acquisition is presented as an alternative of the conventional Monte Carlo simulation. First, an analytical expression of estimating mean acquisition time (MAT) is derived as a function of the desired acquisition probability, taking into account the distribution function of satellite position, field of uncertainty (FOU), beam divergence angle and dwell time. Accordingly, the analytical expression of multi-scan, which is always adopted by practical optical terminals to ensure the acquisition success, is also presented. Then, by minimizing the MAT of multi-scan, the optimum ratio of the FOU θ U to the pointing error deviation σ is obtained, which is θ U / σ = 1.3 . An example for a practical intersatellite acquisition between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is given. And the theoretical result calculated by the proposed analytical expression is approximately equal to the result by Monte Carlo simulation. The results can be used in designing acquisition system for the intersatellite optical communications.

© 2011 OSA

1. Introduction

The first step to establish an IOL is acquisition, which is to compensate for large pointing errors at the beginning of the process and to achieve the communication line of sight (LOS) [7

7. T. T. Nielsen, “Pointing Acquisition and Tracking System for the free space laser communication system, SILEX,” Proc. SPIE 2381, 194–205 (1995). [CrossRef]

,8

8. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19(3), 567–571 (2002). [CrossRef]

]. In intersatellite optical communications it is important to obtain the most efficient performance of acquisition system with respect to acquisition time for a given probability. The typical acquisition process involves the transmitter scans with a narrow laser beacon over an uncertainty area until it is detected and locked on, while the receiver stares with the telescope field of view (FOV), which is illustrated in Fig. 1
Fig. 1 Illustration of spatial acquisition
[9

9. S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the international space station and ground,” Proc. SPIE 3932, 150–157 (2000). [CrossRef]

]. The size of uncertainty area scanned for the partner satellite is the transmitter field of uncertainty (FOU), which usually depends on the deviation of partner satellite’s position and decides the probability of acquisition. Because payloads limit the size and power of terminals in space, the beam divergence angle is relative smaller than ground station’s, or even communication laser is taken as beacon which has a rather smaller divergence angle. In practice, multiple scans must be performed to bring the probability of acquisition to an acceptable level for optical IOLs. So it is of concern to know what the optimum size of FOU should be for the production of the minimum acquisition time performance.

The concept of optical intersatellite communication is described in Ref [10

10. G. Baister and P. V. Gatenby, “Pointing, acquisition and tracking for optical space communications,” J. Electron. Commun. Eng. 271–280 (December 1994). [CrossRef]

]. Numerous studies have focused on the performance and algorithms for acquisition [11

11. K. M. Iftekharuddin and M. A. Karim, “Acquisition by staring focal plane arrays: pixel geometry effects,” Opt. Eng. 32(11), 2649–2656 (1993). [CrossRef]

14

14. P. v. Hove, and V. W. S. Chan, “Spatial Acquisition Algorithms and Systems for Optical ISL,” in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 1208–1214.

]. Various spatial acquisition patterns were proposed, such as raster scan, spiral scan, raster spiral scan, lissajo scan and rose scan, and the result shows that spiral scan is more efficient than the others [15

15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

]. Several cooperative methods were studied, which is, scan/scan stare/stare and scan/stare [15

15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

,16

16. M. Scheinfeild, N. S. Kopenika, and R. Melamed, “Acquisition system for Microsatelllites laser communication in space,” Proc. SPIE 3932, 166–175 (2000). [CrossRef]

], in which stare/scan requires less power and has been verified reliable by OICETs [17

17. T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002). [CrossRef]

]. Based on the result of Monte Carlo acquisition simulation, C. Hindman and L. Robertson verified the feasibility of using the narrow communication laser beam for acquisition as well as proposed the necessary of multiple scans without further research [18

18. C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.

]. Currently, the acquisition time is always conducted through simulation [15

15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

,16

16. M. Scheinfeild, N. S. Kopenika, and R. Melamed, “Acquisition system for Microsatelllites laser communication in space,” Proc. SPIE 3932, 166–175 (2000). [CrossRef]

,18

18. C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.

,19

19. V. A. Skormin, C. R. Herman, M. A. Tascilllo, and J. A. Tasullo, “Mathematical modeling and simulation analysis of pointing, acquisition, and tracking system for laser based Intersatellite communication,” Opt. Eng. 32(11), 2749–2763 (1993). [CrossRef]

]. However, the main problem connected with simulation is complex, time consuming and inconvenient to analyze the relation between system parameter and acquisition time. To the best of author’s knowledge, an analytical study of the acquisition time, correlated with the distribution function of satellite position, the size of the uncertainty area, beam divergence angle, dwell time and so on, has not been carried out in the literature.

In this paper first we derived the analytical expression for estimating the mean acquisition time (MAT) of single-scan based on spiral scan, taking into consideration of the factors mentioned above. And correspondingly, the prediction of the multi-scan MAT was also presented as a function of FOU and satellite distribution deviation. Furthermore, the optimum relation between the FOU and the satellite distribution deviation was derived by using an analytic approximation for the minimum average acquisition time of multi-scan.

2. Mathematical models

Initiation of communications between the two optical terminals requires open-loop pointing of the two terminals towards each other based on the predicted orbital positions of the satellites. There is an initial pointing error derives from the difference of the satellite position with the known Ephemeris primarily because of the uncertainty of satellite attitude. There is also error caused by satellite vibration, which can be eliminated by a two dimensional filter [15

15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

]. The purpose of acquisition is to compensate for the initial pointing error.

The procedure of acquisition is a statistical process. In order to define the acquisition time, we must first present an appropriate mathematical model to describe the various aspects involved. This includes the distribution function of satellite position and the scan time of spiral scan.

2.1 Probability distribution function of satellite position

For a practical IOL, pointing error caused by satellite distribution can be modeled as Gaussian distributed random variables in vertical and horizontal [15

15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

]. And the probability density function (PDF) is defined as
f(θv,h)=12πσv,hexp(θv,h22σv,h2)
(1)
where θv,h is vertical or horizontal error angle, and σv,h2 is variance of vertical or horizontal.

We assume the vertical and the horizontal error follows the identical distribution [15

15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

,16

16. M. Scheinfeild, N. S. Kopenika, and R. Melamed, “Acquisition system for Microsatelllites laser communication in space,” Proc. SPIE 3932, 166–175 (2000). [CrossRef]

], which is zero-mean Gaussian variable with variance of σ2, and independent with each other. Then the radial deviation error is Rayleigh distributed with PDF
f(θ)=θσ2exp(θ22σ2)
(2)
where θ=θv2+θh2 is the radial error, and σ2=σv2=σh2 is the radial variance.

Then the acquisition probability which depends on the size of FOU, can be expressed as:
Pacq=0θUf(θ)dθ=1exp(θU22σ2)
(3)
where θU is half width of the FOU angle.

In Fig. 2
Fig. 2 Position of satellite with Gaussian distribution 400 points in the relative field of uncertainty area; probability of acquisition as a function of the ratio of half-width of uncertainty area to the deviation of satellite position
we can see Pacq as a function of θU/σ according to Eq. (3). In Fig. 2 each scattered spot represents a possible location of partner satellite in transmitter satellite’s FOU. And the solid line represents the corresponding acquisition probability for various θU/σ. From this figure it is seen that for almost all of the position of satellite depicted, θU=3σis large enough to acquisition them with a high probability approximately to 98.9%. 3σlevel is usually adopted by acquisition system design for single-scan [17

17. T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002). [CrossRef]

,18

18. C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.

,20

20. J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep space missions,” Proc. SPIE 3615, 230–249 (1999). [CrossRef]

].

2.2 Scanning pattern

The scanning pattern of spiral scan is illustrated in Fig. 3
Fig. 3 Sketch of spiral scan in the field of uncertainty area
. It is shown that the spiral scan by Eq. (4) can cover the FOU efficiently with constant step length determined by beacon beam divergence angle. The dashed line is the edge of FOU for searching, and the solid line is the trace of beacon beam, in which the point means the location of each step. It is drawn from Fig. 3 that the larger the FOU is, the more steps would be taken to search, and accordingly, the scan time of acquisition is increased. Also as the scanning beam size increases, the step length increases and the acquisition is made faster. But in order to produce large and wide divergence beam need more power and a large telescope, which increase the complexity of the optical terminal [18

18. C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.

].

TU=πθU2Iθ2Δt
(7)

3. Mean acquisition time of single-scan

Based on models in section 2, we derive an analytic expression of MAT with relation to the probability of acquisition by the factor of FOU.

We evaluate the statistical acquisition time according to the expected value. Therefore the single scan acquisition time should be averaged with respect to the PDF of the satellite position and is given by

ETS=0θUT(θr)f(θr)dθr
(8)

Substituting Eqs. (5) and (2) into Eq. (8) yields

ETS=2πσ2Iθ2[1(θU22σ2+1)exp(θU22σ2)]Δt
(9)

Equation (9) shows how the acquisition time of single-scan varies with the dwell time, step length of scan, deviation of initial pointing error, and FOU. It is an analytical expression. So it is easy to analyze the effects of these parameters on the acquisition time. When the IOL environment is designated, the other system parameters are settled except the FOU which is of concern in this paper.

Given the typical parameters Δt=0.1s, Iθ=0.6mradand σ=1,2,4mrad, this gives rise to the plot shown in Fig. 4
Fig. 4 Single-scan MAT Vs. the FOU for various deviation of satellite position
which illustrates the impact on ETS with respect to deviation σ for various FOU values. It is seen in Fig. 4 that ETS is increasing with rising in FOU.

We should also notice that the size of FOU is dependent on the required acquisition probability of single scan PS which is equal to Pacq. And the relation is described as

θU=2σ2ln(1PS)
(10)

4. MAT of multi-scan acquisition and analytical optimization

In practice, the acquisition process adopts multi-scan to ensure the acquisition probability approximately to 1. In this section we develop the acquisition probability and the corresponding MAT of multi-scan.

4.1 MAT of multi-scan acquisition

In this paper we research the multi-scan with the assumption of that the position of receiver satellite is static relative to the FOU of transmitter satellite and the dynamic error can be eliminated by a two dimensional filter. In multi-scan mode, a successful acquisition occurs only when the receiver satellite appears in the FOU of transmitter satellite. In multi-acquisition let the ithacquisition involving scan the FOU relative to the ithinitial pointing point. We let Ai and Ai¯ denote that the receiver satellite locates in the ithFOU and it doesn’t locate in the ithFOU respectively. Hence, a successful acquisition of multi-scan can be described as

M=A1+A1¯A2+...+A1¯A2¯...Ai1¯Ai+...
(11)

Then the probability of multi-scan acquisition is given by

PM=P(A1)+P(A1¯A2)+...+P(A1¯A2¯...Ai1¯Ai)+...
(12)

In each new scan, since it begins with a new initial pointing according to the Ephemeris, the ithscan is independent with the others. Thus, the optimization FOU of each scan is identical, and Eq. (12) is expressed as
PM=i=1nPS(1PS)i1
(13)
where PM is the acquisition probability of multi-scan, andn denotes the total number of scan areas until the acquisition is accomplished. It is obvious to obtain from Eq. (13) that when n, the acquisition probability PM1.And accordingly, the MAT of multi-scan can be defined as
ETM=ET(A1)+ET(A1¯A2)+...+ET(A1¯A2¯...Ai1¯Ai)+...
(14)
where the terms are as defined earlier. The above expression is rewritten as following

ETM=ETSPS+(TU+ETS)(1PS)PS+...+[(i1)TU+ETS](1PS)i1PS+...
(15)

For the case of multi-scan, if 0<PS<1 is satisfied, the expected value of acquisition time can be simplified as

ETM=ETS+(1PSPS)TU
(16)

Substituting Eqs. (3), (7) and (9) into Eq. (16) gives the analytical expression of multi-scan MAT as

ETM=2πσ2Iθ2[1(θU22σ2+1)exp(θU22σ2)+exp(θU22σ2)1exp(θU22σ2)θU22σ2]Δt
(17)

Now one can find the relation of system parameters with acquisition time

In Fig. 5
Fig. 5 Multi-scan MAT Vs. FOU and deviation of satellite position with Δt=0.1s and Iθ=0.6mrad
, the multi-scan MAT is plotted as a function of FOU and deviation of satellite position, taking Δt=0.1sand Iθ=0.6mrad. It is easily seen in Fig. 5 that for each σ there is an optimum θUto minimize the multi-scan MAT.

4.2 Optimum FOU for multi-scan

Theoretically, the optimum θUcan be derived by

ETM(θU)θU=0
(18)

If we define a new variable ε=θU2/2σ2, Eq. (18) becomes

ETM(θU)θU=ETM(ε)εdεdθU=0
(19)

In practice, the optimum θUshould not be 0, and then the problem is simplified to

ETM(ε)ε=0
(20)

The approximately analytical result of Eq. (20) is ε=0.8426, then the optimum FOU θU should be expressed as

θU=1.3σ
(21)

Figure 6
Fig. 6 Multi-scan MAT Vs. deviation of satellite position at different level of FOU with Δt=0.1s and Iθ=0.6mrad
shows the variation of ETM as a function of σ at different level of FOU. Both of them increase with increasing σ. And obviously the curve of θU=1.3σis always below that of θU=3σ, and the deviation between them increases with rises in σ. That means the optimum FOU level is better than the traditional 3σlevel, and the effect is more significant for a larger σ.

The optimum FOU we got in Eq. (21) with respect to initial pointing error deviation for the minimum MAT of multi-scan, will aid optical terminal acquisition system design.

5. Practical situation

The simulation is done in Matlab. In simulation the distance between LEO and GEO is 36,000 km, and the control frequency bandwidth of the fine tracking system in LEO is 200 Hz. Hence, the dwell time should be Δt=0.245s. The position of satellite is estimated to have attitude knowledge with variance of 2mrad [18

18. C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.

]. The beacon beam divergence angle is 300μrad, and the corresponding step length is 200μrad. Simulation has been carried out on each FOU for 5000 different satellite positions, and the result is shown in Fig. 7
Fig. 7 Comparison of simulation and theoretical MAT of multi-scan Vs. the ratio of FOU to deviation of satellite position
.

The scattered points in Fig. 7 represent the calculated MAT of multi-scan by simulation for different size of FOU, compared with the theoretical value according to analytical expression Eq. (17). Figure 7 illustrates the effect of the proposed analytical expression Eq. (17) in estimating an MAT approximately equal to the MAT of the Monte Carlo simulation results. And it is also proved that there is an optimum size of FOU associated with satellite position deviation with production of a minimal MAT.

6. Conclusions

In this paper, we have developed and validated a novel approach to the analytical expression of estimating average acquisition time for intersatellite optical communications instead of the complex simulation. This analytical model accounts for the major parameters relation with acquisition time, including beam divergence angle, dwell time, as well as initial pointing error and size of the uncertainty area. Considering the acquisition probability, multi-scan acquisition is discussed, and the corresponding MAT is also presented. Then the analytic expression for the optimum ratio of FOU to deviation of initial pointing error is derived for the production of the least MAT, which is obtained to be θU/σ=1.3. The comparison of theoretical and simulation results shows consistent, and also indicates that the optimum FOU is more efficient than the conventional 3σlevel. This methodology is applied in intersatellite optical system with relative narrow beacon beam especially the system using communications beam for acquisition. The result obtained here will be useful in parametric performance estimation and optimization of acquisition system design.

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (NSFC) for financial support under Projects Nos. 10374023 and 60432040

References and links

1.

M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications,” J. Opt. Networking 4(6), 300–311 (2005). [CrossRef]

2.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE 3232, 119–128 (1998). [CrossRef]

3.

R. G. Marshalek and G. A. Koepf, “Comparison of optical technologies for intersatellite links in a global telecommunication network,” Opt. Eng. 27, 663–676 (1988).

4.

R. W. Kaliski, S. M. Genco, D. Thompson, B. Breshears, T. O’Connor, K. M. Miller, E. W. Taylor, A. D. Sanchez, J. E. Winter, and R. M. Ewart, “Laser communication intersatellite links realized with commercial off-the-shelf technology,” Proc. SPIE 3615, 170–178 (1999). [CrossRef]

5.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. O. Korhonen, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Enhancing performance of next generation FSO communication systems using soft computing-based predictions,” Opt. Express 14(12), 4958–4968 (2006). [CrossRef] [PubMed]

6.

K. J. Held and J. D. Barry, “Precision pointing and tracking between satellite-born optical systems,” Opt. Eng. 27, 325–333 (1988).

7.

T. T. Nielsen, “Pointing Acquisition and Tracking System for the free space laser communication system, SILEX,” Proc. SPIE 2381, 194–205 (1995). [CrossRef]

8.

M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19(3), 567–571 (2002). [CrossRef]

9.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the international space station and ground,” Proc. SPIE 3932, 150–157 (2000). [CrossRef]

10.

G. Baister and P. V. Gatenby, “Pointing, acquisition and tracking for optical space communications,” J. Electron. Commun. Eng. 271–280 (December 1994). [CrossRef]

11.

K. M. Iftekharuddin and M. A. Karim, “Acquisition by staring focal plane arrays: pixel geometry effects,” Opt. Eng. 32(11), 2649–2656 (1993). [CrossRef]

12.

G. Picchi, G. Prati, and D. Santerini, “Algorithms for Spatial Laser Beacon Acquisition,” IEEE Trans. Aerospace Electron. Syst. AES-22(2), 106–114 (1986). [CrossRef]

13.

T. Jono, M. toyoda, K. Nakagawa, A. Yamamoto, K. Shiratama, T. Kurii, and Y. Koyama, “Acquisition tracking and pointing system of OICETS for free space laser communications,” Proc. SPIE 3692, 41–50 (1999). [CrossRef]

14.

P. v. Hove, and V. W. S. Chan, “Spatial Acquisition Algorithms and Systems for Optical ISL,” in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 1208–1214.

15.

M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]

16.

M. Scheinfeild, N. S. Kopenika, and R. Melamed, “Acquisition system for Microsatelllites laser communication in space,” Proc. SPIE 3932, 166–175 (2000). [CrossRef]

17.

T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002). [CrossRef]

18.

C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.

19.

V. A. Skormin, C. R. Herman, M. A. Tascilllo, and J. A. Tasullo, “Mathematical modeling and simulation analysis of pointing, acquisition, and tracking system for laser based Intersatellite communication,” Opt. Eng. 32(11), 2749–2763 (1993). [CrossRef]

20.

J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep space missions,” Proc. SPIE 3615, 230–249 (1999). [CrossRef]

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(350.6090) Other areas of optics : Space optics
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 22, 2010
Revised Manuscript: December 28, 2010
Manuscript Accepted: January 17, 2011
Published: January 25, 2011

Citation
Xin Li, Siyuan Yu, Jing Ma, and Liying Tan, "Analytical expression and optimization of spatial acquisition for intersatellite optical communications," Opt. Express 19, 2381-2390 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications,” J. Opt. Networking 4(6), 300–311 (2005). [CrossRef]
  2. T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace,” Proc. SPIE 3232, 119–128 (1998). [CrossRef]
  3. R. G. Marshalek and G. A. Koepf, “Comparison of optical technologies for intersatellite links in a global telecommunication network,” Opt. Eng. 27, 663–676 (1988).
  4. R. W. Kaliski, S. M. Genco, D. Thompson, B. Breshears, T. O’Connor, K. M. Miller, E. W. Taylor, A. D. Sanchez, J. E. Winter, and R. M. Ewart, “Laser communication intersatellite links realized with commercial off-the-shelf technology,” Proc. SPIE 3615, 170–178 (1999). [CrossRef]
  5. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. O. Korhonen, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Enhancing performance of next generation FSO communication systems using soft computing-based predictions,” Opt. Express 14(12), 4958–4968 (2006). [CrossRef] [PubMed]
  6. K. J. Held and J. D. Barry, “Precision pointing and tracking between satellite-born optical systems,” Opt. Eng. 27, 325–333 (1988).
  7. T. T. Nielsen, “Pointing Acquisition and Tracking System for the free space laser communication system, SILEX,” Proc. SPIE 2381, 194–205 (1995). [CrossRef]
  8. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19(3), 567–571 (2002). [CrossRef]
  9. S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the international space station and ground,” Proc. SPIE 3932, 150–157 (2000). [CrossRef]
  10. G. Baister and P. V. Gatenby, “Pointing, acquisition and tracking for optical space communications,” J. Electron. Commun. Eng. 271–280 (December 1994). [CrossRef]
  11. K. M. Iftekharuddin and M. A. Karim, “Acquisition by staring focal plane arrays: pixel geometry effects,” Opt. Eng. 32(11), 2649–2656 (1993). [CrossRef]
  12. G. Picchi, G. Prati, and D. Santerini, “Algorithms for Spatial Laser Beacon Acquisition,” IEEE Trans. Aerospace Electron. Syst. AES-22(2), 106–114 (1986). [CrossRef]
  13. T. Jono, M. toyoda, K. Nakagawa, A. Yamamoto, K. Shiratama, T. Kurii, and Y. Koyama, “Acquisition tracking and pointing system of OICETS for free space laser communications,” Proc. SPIE 3692, 41–50 (1999). [CrossRef]
  14. P. v. Hove, and V. W. S. Chan, “Spatial Acquisition Algorithms and Systems for Optical ISL,” in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 1208–1214.
  15. M. Scheinfeild, N. S. Kopenika, and S. Arnon, “Acquisition time calculation and Influence of vibrations for Micro satellite laser communication in space,” Proc. SPIE 4365, 195–205 (2001). [CrossRef]
  16. M. Scheinfeild, N. S. Kopenika, and R. Melamed, “Acquisition system for Microsatelllites laser communication in space,” Proc. SPIE 3932, 166–175 (2000). [CrossRef]
  17. T. Tolker-Nielsen and G. Oppenhaeuser, “In orbit test of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” Proc. SPIE 4635, 1–15 (2002). [CrossRef]
  18. C. Hindman, and L. Toberton, “Beaconless satellite laser acquisition – modeling and feasibility,” MILCOM 2004 – IEEE Military Communications Conference, Montery, CA 2004. pp. 41–47.
  19. V. A. Skormin, C. R. Herman, M. A. Tascilllo, and J. A. Tasullo, “Mathematical modeling and simulation analysis of pointing, acquisition, and tracking system for laser based Intersatellite communication,” Opt. Eng. 32(11), 2749–2763 (1993). [CrossRef]
  20. J. W. Alexander, S. Lee, and C. Chen, “Pointing and tracking concepts for deep space missions,” Proc. SPIE 3615, 230–249 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited