OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2858–2865
« Show journal navigation

Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide

F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 2858-2865 (2011)
http://dx.doi.org/10.1364/OE.19.002858


View Full Text Article

Acrobat PDF (1595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically studied nonlinear interactions between surface plasmon polariton (SPP) and conventional waveguide mode in nonlinear hybrid waveguide and proposed a possible method to enhance SPP wave via optical parametric amplification (OPA). The phase matching condition of this OPA process is fulfilled by carefully tailoring the dispersions of SPP and guided mode. The influences of incident intensity and phase of guided wave on the OPA process are comprehensively analyzed. It is found that not only a strong enhancement of SPP but also modulations on this enhancement can be achieved. This result indicates potential applications in nonlinear optical integration and modulations.

© 2011 OSA

1. Introduction

Surface Plasmon Polaritons (SPPs) are electromagnetic waves localized at the surface of a metal. Benefitting from its unique properties to squeeze electromagnetic energy into sub-wavelength scale, SPPs are better carriers of optical signal to be adopted in micro/nano-devices compared to conventional optical modes supported by dielectric waveguides. However, absorption caused by metal is one of the most frustrating problems, which greatly reduces its propagation length and limits its application. Up to now, several methods have been proposed to overcome the large losses of SPP. Long Range SPP [1

1. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]

] supported by dielectric/metal/dielectric structure once has been regarded as a promising mode with lower loss compared to conventional SPP, but it damages the strong localization of electromagnetic energy thus somewhat improper for miniaturization of photonic devices. Another widely studied method is using gain medium [2

2. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]

], a kind of optically active dielectric which can compensate the losses of SPP in propagation and even to achieve the Spaser [3

3. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]

,4

4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

]. Besides, hybrid waveguide, a combination of metal and dielectric media, provides a compromise between the field localization and low propagating loss in a more controllable manner, for example, the dielectric-loaded waveguide [5

5. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasman-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]

,6

6. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010). [CrossRef] [PubMed]

].

In this letter, we theoretically propose an alternative means to overcome the loss of SPP by producing amplification with the aid of auxiliary guided wave via nonlinear optical process. It is fulfilled in a hybrid waveguide, which is formed by nonlinear dielectric planar waveguide covered with a metallic layer so that it can be appropriately designed to support both the SPP and conventional guided modes. The coupling between SPP and guided modes tends to be possible since the field overlap is no too small, and the nonlinear optical process will be efficiently implemented. Thus conventional nonlinear optics effect [7

7. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2003).

10

10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]

] will be properly introduced to the plasmonic system. In fact, plasmonic nonlinear effects have arrested people’s attention over a long period [11

11. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical Second-Harmonic Generation with Surface Plasmons in Silver Films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974). [CrossRef]

13

13. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008). [CrossRef] [PubMed]

]. Our work will make an elaborate study of SPP involved optical parametric amplification in presence of a conventional guided mode as a pumping wave with doubled frequency in hybrid waveguide. The influences of the initial intensity and phase of these modes will be discussed in detail, which are considered to provide fruitful modulations on SPP amplification.

2. Theoretical model

Figure 1(a)
Fig. 1 (a) Schematic of a dielectric/dielectric/metal planar hybrid waveguide, where NLD1 and NLD2 represent the nonlinear dielectric with higher and lower refractive indices respectively; (b) The mode profiles of SPP (red) and TM1 (blue) in hybrid waveguide, which are revealed as Hy.
schematically show the proposed hybrid planar waveguide, which is composed of a conventional dielectric waveguide (a high index medium NLD1 adjacent to a low index medium superstrate NLD2) and a metallic substrate. Without loss of generality, the dielectric function of metal is describe by the Drude model [14

14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

], and the nonlinear dielectric parts are defined by tensors in their dispersive permittivity. In this scheme, the metal substrate and NLD2 superstrate are both of semi-infinite thickness, and the middle waveguide layer (NLD1) is defined with thickness of d.

Since SPP can be regarded as a kind of special waveguide mode, we use the method in Ref [15

15. G. Lifante, Integrated Photonics: Fundamentals (Wiley, England, 2003).

]. to derive the mode equations by adopting the appropriate boundary conditions as
k1d=nπ+tan1(f1pk1)+tan1(f2qk1), n=0,1,2... ,
(1)
where k1=(k02ε1zk2)ε1x/ε1z, p=k2k02εm and q=(k2k02ε2z)ε2x/ε2z, in which k is the in-plane wave vector (along x direction) of corresponding modes. The permittivity components ε 1 x, ε 1 z, ε 2 x, ε 2 z correspond to diagonal elements of permittivity tensor of NLD1 and NLD2. For TM polarization, f 1 = ε 1 xm, f 2 = ε 1 x/ε 2 x; while for TE polarization, f 1 = f 2 = 1. By solving the dispersion relation of Eq. (1) with n = 0 in TM polarization case, we can find in-plane wave vector k always increases with the layer thickness d. As the condition k >k 0(ε 1 z)1/2 is satisfied by increase d, k 1 turns to be imaginary indicating an exponentially decay field from the interface. Thus we can make sure that the expected SPP in hybrid planar waveguide is just TM0 mode supported by this structure. Of course, a higher guided TM1 mode (n = 1) will be accommodated by further increasing d to a proper value.

Afterwards, the nonlinear interaction of different electromagnetic modes has to be discussed to illustrate the optical parametric amplification (OPA) in hybrid waveguide. It is convenient to start from Maxwell equations
×Ei=μHit,×Hi=εEit+PiNLt,
(2)
where ε and μ are the linear permittivity and permeability, and subscription i = 1,2 refers to the considered SPP and guided mode (TM1) with frequencies of ω and 2ω, respectively. PNL is the nonlinear polarization vector and ∂PNL/∂t can be viewed as a source term that arises from the nonlinear interaction. For OPA process, a kind of second order nonlinear effect, we have P1NL=ε0χ:E2*E1 and P2NL=(1/2)ε0χ:E1E1 . Tensor χ is the second order nonlinear susceptibility. According to coupled mode theory in waveguide, Ei and Hi can be expanded in terms of all canonical modes at the same frequency [15

15. G. Lifante, Integrated Photonics: Fundamentals (Wiley, England, 2003).

]: El=Al(x)El(z)exp(iklx),Hl=Al(x)Hl(z)exp(iklx). The waves are assumed to propagate along + x direction; Al(x) is the amplitude, which evolves with x due to coupling between different modes and propagation loss; El(z) and Hl(z) are mode profiles which have been normalized as 12+exRe{El(z)×Hl*(z)}dz=1. Following the method from Ref [16

16. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17(16), 13502–13515 (2009). [CrossRef] [PubMed]

], the coupling between SPP and a guided mode in hybrid waveguide can be described by coupled wave equations:
A1x=α12A1+iωε04κ1A1*A2ei(β22β1)x,A2x=α22A2+iωε04κ2A12ei(β22β1)x,
(3)
where βi and αi/2 (i = 1,2) are real part and imaginary part of corresponding wave vectors, i.e., ki = βi + iαi/2; αi is defined as absorption coefficient; and κi is the coupling coefficient that defined as κ1=χ:E2E1*E1*dz, κ2=χ:E1E1E2*dz. The first term at right side for both equations corresponds to an attenuation indicating the energy conversions between different modes have to overcome losses proportional to absorption coefficient. Thus the power of SPP will not be amplified until the gains from the other electromagnetic mode obviously surpass the losses of SPP. Besides, the phase condition, Δβ = β 2 -2β 1, also directly affects the conversion efficiency. Due to the dispersion caused by nonlinear material, it is usually difficult to satisfy phase matching conditions. Phase mismatching (Δβ≠0) will lead to cycle flows of energy between these two modes and limit the one-way conversion efficiency, making the amplification of SPP impossible.

In fact, the phase mismatch from the medium dispersion is a common problem in the nonlinear optical parametric process. During the past few decades, several methods have been developed to solve this problem (e.g., birefringence phase matching (BPM) [17

17. R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6(5), 213–215 (1981). [CrossRef] [PubMed]

] and quasi phase matching (QPM) [9

9. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]

,10

10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]

]). However, most of these works were carried out in crystal optics regime without emphasizing the spatial confinement. To achieve an efficient optical parametric process in a waveguide or plasmonic system still remain considerable difficulties [18

18. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999). [CrossRef]

21

21. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17(22), 20063–20068 (2009). [CrossRef] [PubMed]

]. More recently, the QPM technique was theoretically proposed to realize the plasmonic frequency conversion by adopting the periodically poled nonlinear crystal as the dielectric environment [22

22. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010). [CrossRef]

], but it consequently increases the complexity in structure fabrications. Fortunately, the SPP wave itself has a larger wave vector compared with the light and guided wave in adjacent medium. According to Eq. (3), by defining β 1(ω) and β 2(2ω) as the wave vectors of SPP and guided mode respectively, the phase matching condition 2β(ω) = β(2ω) will be appropriately obtained by carefully adjusting the modes dispersions. In this regard, it is reasonable to using a guided wave of β 2(2ω) as an auxiliary light to compensate the propagating loss of SPP and even amplify it.

3. Example and analysis

To be specific, we consider silver for the metal substrate and LiNbO3 for the anisotropic nonlinear dielectric that forms a conventional dielectric planar waveguide [20

20. Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, “Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide,” Opt. Express 17(13), 10718–10724 (2009). [CrossRef] [PubMed]

]. For simplification, the dielectric constant of the high index layer (middle LND1 layer) is simply defined by ε 1 i = ε 2 i + 0.04 (i = x,y,z), corresponding to a numerical aperture of about 0.2 for the conventional dielectric waveguide, where ε 2 i is permittivity tensor elements of common LiNbO3 [23

23. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]

]. To obtain high conversion efficiency and satisfactory amplification, it is best to make use of the largest component of nonlinear coefficient of χ, d 33 for LiNbO3 [23

23. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]

]. Thus it is preferable to orientate the crystalline axis along direction z, and use TM1 mode as the auxiliary pumping wave, the coupling coefficients can be simplified by only considering the transverse fields as
κ1=d33E2,z(E1,z*)2dz=κ*,κ2=d33E2,z*(E1,z)2dz=κ,
(4)
since the integration over the longitudinal components (d 31, d 22 and Ei , x) is too small and can be neglected as well as Ref. 20

20. Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, “Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide,” Opt. Express 17(13), 10718–10724 (2009). [CrossRef] [PubMed]

. The thickness of the middle layer (NLD1) is set to be 3μm. To obtain phase matching, the wavelength of SPP and TM1 mode is selected carefully. Dispersion relations of SPP and TM1 mode are plotted in Fig. 2(a)
Fig. 2 (a) Dispersion relations of SPP (red curve) and TM1 mode (blue curve) in hybrid waveguide. Inset shows the frequency vs. effective index. (b) Evolutions of normalized intensity of SPP (left logarithm scale) and TM1 (right linear scale) modes in propagations, where the incident initial intensities are defined as P SPP (0) = 1kW/cm and P TM1 (0) = 50MW/cm. A decay tendency of a pure SPP without amplification is also depicted as the dashed line.
. Since phase matching condition can also be described as n TM1 = n SPP, we plot frequency versus effective index in the inset of Fig. 2(a) to make it more obvious. The intersection point of the two curves, 168.4THz for SPP and 336.8THz for TM1, indicates the satisfaction of phase matching. The corresponding effective indices are n SPP = 2.1731 + i0.001 and n TM1 = 2.1731 + i2.593 × 10−6. Figure 1(b) shows the mode profiles of SPP and TM1 used in this work. The field of SPP is tightly localized at the metal surface, with over 93% power confined in a 1μm thin dielectric layer, while only ~90% power of the TM1 mode in the 3μm waveguide layer though it has a doubled frequency. The priority of SPP as the sub-wavelength waveguide is clearly demonstrated.

Figure 2(b) shows the result of SPP amplification by OPA process by solving Eq. (3) with the simplified coupling coefficient [Eq. (4)], where the solid curves show the evolutions of power amplification of SPP (red curve in logarithm scale) and the pumped TM1 power (blue in linear scale). The calculation is performed with incident intensity of 1kW/cm for SPP mode as a seed signal and 50MW/cm and for TM1 guided mode as the pumping wave. The highest conversion efficiency is 1.69% and the peak of SPP appears at the position of 5.8 mm. To make a comparison, we also plot the trend of SPP attenuation without the TM1 pumping wave (the dashed curve). It is clearly found that the intensity of this pure SPP drops to 1/e after only about 140μm, while SPP interacted with pumping wave gets amplification by about 845 times at the peak position.

Owing to the nature of second order nonlinear effect, this SPP OPA process should depend on the intensity of incident pumping TM1 mode. In Fig. 3(a)
Fig. 3 (a) OPA efficiency and SPP peak position as a function of the incident intensity of TM1; (b) OPA efficiency and SPP peak position as a function of the incident intensity of seed SPP.
, OPA efficiency (left label) and the SPP amplification peak position (right label) with respect to the pumping intensity are depicted. It is apparently shown that the OPA process has a threshold pumping power (P TM1 (0)~35MW/cm), below which the pumping TM1 is unable to amplify the seed SPP and no SPP peak in propagation can be observed as a result. When the pumping intensity exceed the threshold, the efficiency increases rapidly (from 0% to 27% as P TM1 (0) ranges from 35 to 150MW/cm), while the SPP peak position experiences a maximum value (at P TM1 (0)~43MW/cm) and tends to descend with the increase of P TM1 (0). In addition, we plot another OPA dependence of the intensity of seed SPP for a comparison as shown in Fig. 3(b), where the intensity of seed SPP ranges from 0.1kW/cm to 10kW/cm while the efficiency varies within a narrow range (1% ~2.5%). This influence of the amplification effect is rather weaker than P TM1 (0). This phenomenon is reasonably explained by deducing coupled wave equation from Eq. (3) to
d|A1|dx=12|A1|[α1+12ωε0|κ||A2|sinψ(x)],
(5a)
d|A2|dx=12|A2|[α212ωε0|κ||A1|2|A2|sinψ(x)],
(5b)
where ψ(x) = Φ + 2φ 1(x)-φ 2(x), A 1 = |A 1|exp[ 1(x)], A 2 = |A 2|exp[ 2(x)] and κ = |κ|exp(iΦ). To get an amplification of SPP, d|A 1|/dx>0 should be satisfied. But the absorption coefficient (α 1) of SPP, obviously acts as the obstacle for the energy transfer from TM1 to SPP. Then, we can get a critical intensity of TM1 by solving d|A 1|/dx = 0, and obtain |A 2| = 2α 1[ωε 0|κ|sinψ(x)]−1, which corresponds to a balance value for a “lossless” SPP. On one hand, this critical balance value of P TM1 determines the threshold of P TM1 (0); on the other hand, it results in an SPP peak in propagation [see Fig. 2(b)]. In the peak position, the pumping energy decreases to the balance value, after which the pumping gain is overcome by the loss and leads to attenuation of SPP wave. Commonly, with stronger incident intensity SPP signal will be amplified at a shorter distanced due to the higher enhancement rate indicated in Eq. (5)a), which coincides with the major tendency. However, if the pumping intensity is merely above the threshold, the amplification will stop soon since the energy may consume to below the balance value quickly within a short distance. With the pumping energy increases, this distance will extend and a maximum peak position emerges at a proper value of P TM1 (0). It well explains the non-monotonous evolution of the SPP peak position in Fig. 3(a). Besides, Eq. (5)a) and (5b) also indicate the OPA efficiency is more relevant to |A 2| than |A 1| revealing different dependences on the intensity of pumping TM1 and seed SPP in Fig. 3(a) and 3(b), respectively.

dφ1dx =14ωε0|κ||A2|cosψ(x),
(6a)
dφ2dx =14ωε0|κ||A1|2|A2|cosψ(x).
(6b)

Though phase matching condition is satisfied between the two different modes, the phase still changes with propagating until a stable value is obtained (ψ = 0.5π), which is clearly revealed in the evolutions of the phases with different initial value (0.5π, 1.0π, 1.2π and 1.4π) in Fig. 4(a)
Fig. 4 (a) Phase evolutions with different incident phases, where ψ(x) = Φ + 2φ 1(x)-φ 2(x); (b) OPA efficiency and SPP peak position as the functions of incident phase ψ(0), where P TM1 (0) = 50MW/cm and P SPP (0) = 1kW/cm; (c) Evolutions of SPP intensity as propagation in condition of different incident pumping phases.
. According to Eq. (6)a) and (6b), cosψ(x) = 0 [or ψ(x) = (1/2 + n)π] is stable values for the phase. However, for even and odd number n, sinψ(x) is 1 and −1 respectively, which directly decides the sign of d|A 1|/dx according to Eq. (5)a). Thus, for some improper incident phases, OPA efficiency may be much lower and even get a negative contribution at the beginning. In this case, the SPP wave has to propagate much longer and experience extra losses until the phases get a stable value beneficial to SPP amplification. To prove our prediction, we change ψ(0) from 0 to 2π to see the influence of incident phase. Figure 4(b) shows the OPA efficiency and peak position of different ψ(0), where the incident intensities of TM1 and SPP are 50MW/cm and 1kW/cm respectively. When ψ(0) = 1.5π (corresponding to sinψ(0) = −1), a dip of efficiency appears together with a longest SPP peak position as predicted, while the highest efficiency is achieved at ψ(0) = 0.5π. In Fig. 4(c), the intensity evolution of SPP with respect to different initial phase ψ(0) are shown in different color curves, respectively. Combined with the phase evolution [Fig. 4(a)], we may find when incident phase at desirable value, such as 0.5π, ψ(x) reach the stable value immediately and SPP get amplified once the process started. For some improper incident phases near to undesirable value, for example, ψ(0) = 1.4π, a long distance of propagation is necessary to get a desirable stable phase value for amplification of the seed SPP wave. For such incident phases indeed, SPP will firstly decay to an extremely low level before getting amplified.

4. Discussions

According to above results and analyses, we prove the possibility of obtaining enhanced SPP by optical parametric amplification in this nonlinear hybrid waveguide. In principle, this phenomenon arises from the interaction of two optical modes via the nonlinear effect. For more general consideration, such energy exchanges may exist in more cases, for example, other higher ordered guided modes. However, different from the small field overlap of those higher ordered modes that commonly leads to low conversion efficiency, the field overlap of SPP and TM1 mode is acceptable [see Fig. 1(b)], which fortunately provides us the possibility to realize the direct phase matching condition without any additional structural design (like Ref. 22

22. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010). [CrossRef]

). In fact, other second order nonlinear effects between SPP and conventional waveguide mode also can be derived in such kind of nonlinear hybrid waveguide. For example, the reversed process of this OPA, i.e., second harmonic generation from the SPP to the double-frequency waveguide mode, is reasonably expected as long as the phase matching condition is satisfied. Therefore, this scheme provides a new way not only to achieve the frequency conversions but also to realize the switches between the conventional guide wave and subwavelength SPP wave. From this point of view, such a hybrid waveguide also can be regarded as a coupler from radiative light to evanescent wave and vice versa.

Nevertheless, the revealed SPP amplification is still an important application of this nonlinear optical process. It may really provide opportunities to overcome the propagating loss of SPP rather than using a common gain medium. Furthermore, from our detailed analyses of the OPA influenced by the pumping intensity and phase tuning, this method reveals convenient modulations on the SPP wave at will, but not a merely amplification. In this sense, information can be loaded on the pumping guided wave to control SPP behavior, which is considered very important in future subwavelength integration and modulations.

5. Conclusion

Acknowledgement

The authors thank Dr. X. P. Hu for beneficial discussions. This work is supported by the State Key Program for Basic Research of China (Nos. 2010CB630703, 2009CB930501), the National Natural Science Foundation of China (Nos. 10974090, 60990320 and 11021403), and the National Undergraduates Innovation Program of China.

References and Links

1.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]

2.

I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]

3.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]

4.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

5.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasman-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]

6.

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010). [CrossRef] [PubMed]

7.

R. W. Boyd, Nonlinear Optics (Elsevier Science, 2003).

8.

R. A. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979). [CrossRef]

9.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]

10.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]

11.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical Second-Harmonic Generation with Surface Plasmons in Silver Films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974). [CrossRef]

12.

H. J. Simon, R. E. Benner, and J. G. Rako, “Optical second harmonic generation with surface plasmons in piezoelectric crystals,” Opt. Commun. 23(2), 245–248 (1977). [CrossRef]

13.

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008). [CrossRef] [PubMed]

14.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

15.

G. Lifante, Integrated Photonics: Fundamentals (Wiley, England, 2003).

16.

Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17(16), 13502–13515 (2009). [CrossRef] [PubMed]

17.

R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6(5), 213–215 (1981). [CrossRef] [PubMed]

18.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999). [CrossRef]

19.

H. Jiang, G. H. Li, and X. Y. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17(18), 16073–16080 (2009). [CrossRef] [PubMed]

20.

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, “Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide,” Opt. Express 17(13), 10718–10724 (2009). [CrossRef] [PubMed]

21.

A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17(22), 20063–20068 (2009). [CrossRef] [PubMed]

22.

Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010). [CrossRef]

23.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 10, 2010
Revised Manuscript: January 18, 2011
Manuscript Accepted: January 21, 2011
Published: January 31, 2011

Citation
F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, "Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide," Opt. Express 19, 2858-2865 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  2. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]
  3. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  5. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasman-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  6. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2003).
  8. R. A. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979). [CrossRef]
  9. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  11. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical Second-Harmonic Generation with Surface Plasmons in Silver Films,” Phys. Rev. Lett. 33(26), 1531–1534 (1974). [CrossRef]
  12. H. J. Simon, R. E. Benner, and J. G. Rako, “Optical second harmonic generation with surface plasmons in piezoelectric crystals,” Opt. Commun. 23(2), 245–248 (1977). [CrossRef]
  13. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008). [CrossRef] [PubMed]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  15. G. Lifante, Integrated Photonics: Fundamentals (Wiley, England, 2003).
  16. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  17. R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6(5), 213–215 (1981). [CrossRef] [PubMed]
  18. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode,” Opt. Lett. 24(22), 1590–1592 (1999). [CrossRef]
  19. H. Jiang, G. H. Li, and X. Y. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17(18), 16073–16080 (2009). [CrossRef] [PubMed]
  20. Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, “Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide,” Opt. Express 17(13), 10718–10724 (2009). [CrossRef] [PubMed]
  21. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17(22), 20063–20068 (2009). [CrossRef] [PubMed]
  22. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82(15), 155107 (2010). [CrossRef]
  23. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited