OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4560–4565
« Show journal navigation

Efficient multi-keV x-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse

Z. Zhang, M. Nishikino, H. Nishimura, T. Kawachi, A. S. Pirozhkov, A. Sagisaka, S. Orimo, K. Ogura, A. Yogo, Y. Okano, S. Ohshima, A. Sunahara, S. Fujioka, H. Kiriyama, K. Kondo, T. Shimomura, and S. Kanazawa  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4560-4565 (2011)
http://dx.doi.org/10.1364/OE.19.004560


View Full Text Article

Acrobat PDF (955 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

line emissions from Mo and Ag plates were experimentally studied using clean, ultrahigh-intensity femtosecond laser pulses. The absolute yields of x-rays at 17 keV from Mo and 22 keV from Ag were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significantly enhanced yields were obtained for both Mo and Ag by employing high contrast ratios and irradiances. Conversion efficiencies of 4.28 × 10−5 /sr for Mo and 4.84 × 10−5 /sr for Ag, the highest values obtained to date, were demonstrated with contrast ratios in the range 10−10 to 10−11.

© 2011 Optical Society of America

1. Introduction

As a bright, narrow band, energetic x-ray source, laser driven x-ray is adapted for various applications including probing of dense matters treated in the field of high energy density physics [1

1. R. Stephens, R. Snavely, Y. Aglitskiy, F. Amiranoff, C. Andersen, D. Batani, S. Baton, T. Cowan, R. Freeman, T. Hall, S. Hatchett, J. Hill, M. Key, J. King, J. Koch, M. Koenig, A. MacKinnon, K. Lancaster, E. Martinolli, P. Norreys, E. Perelli-Cippo, M. Le Gloahec, C. Rousseaux, J. Santos, and F. Scianitti, “Kα fluorescence measurement of relativistic electron transport in the context of fast ignition,” Phys. Rev. E 69, 066414 (2004). [CrossRef]

, 2

2. A. L. Kritcher, P. Neumayer, C. R. D. Brown, P. Davis, T. Doeppner, R. W. Falcone, D. O. Gericke, G. Gregori, B. Holst, O. L. Landen, H. J. Lee, E. C. Morse, A. Pelka, R. Redmer, M. Roth, J. Vorberger, K. Wuensch, and S. H. Glenzer, “Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering,” Phys. Rev. Lett. 103, 245004 (2009). [CrossRef]

]. Moreover, laser driven x-ray sources have been widely used for inner shell photoionization [3

3. S. Moon and D. Eder, “Theoretical investigation of an ultrashort-pulse coherent x-ray source at 45 angstrom,” Phys. Rev. A 57, 1391 (1998). [CrossRef]

, 4

4. S. Fujioka, H. Takabe, N. Yamamoto, D. Salzmann, F. Wang, H. Nishimura, Y. Li, Q. Dong, S. Wang, Y. Zhang, Y.-J. Rhee, Y.-W. Lee, J.-M. Han, M. Tanabe, T. Fujiwara, Y. Nakabayashi, G. Zhao, J. Zhang, and K. Mima, “X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion,” Nat. Phys. 5, 821–825 (2009). [CrossRef]

], ultra-fast biomedical imaging [5

5. J. Kieffer, A. Krol, Z. Jiang, C. Chamberlain, E. Scalzetti, and Z. Ichalalene, “Future of laser-based X-ray sources for medical imaging,” Appl. Phys. B 74, 75–81 (2002). [CrossRef]

], lattice dynamics probing [6

6. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, “Femtosecond x-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003). [CrossRef] [PubMed]

], and basic research in radiation biology [7

7. M. Nishikino, K. Sato, N. Hasegawa, M. Ishino, S. Ohshima, Y. Okano, T. Kawachi, H. Numasaki, T. Teshima, and H. Nishimura, “Note: application of laser produced plasma K alpha x-ray probe in radiation biology,” Rev. Sci. Instrum. 81, 026107 (2010). [CrossRef] [PubMed]

, 8

8. S. Katsutoshi, N. Masaharu, O. Yasuaki, O. Shin-suke, H. Noboru, I. Masahiko, K. Tetsuya, N. Hodaka, T. Teruki, and N. Hiroaki, “γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation,” Radiat. Res. 174, 436–445 (2010). [CrossRef]

].

2. Experimental setup

Experiments were performed at J-KAREN laser facility at Japan Atomic Energy Agency, Kansai Photon Science Institute. This system delivers laser pulses at a wavelength of 800 nm. In this experiment, the laser energy on the target was about 1.8 J. The effective pulse duration is 58 fs, which provides the peak power of 30 TW for a pulse energy of 1.8 J. The laser pulse from the J-KAREN system contains two pre-pulse components: a leakage component from the pre-amplification stage, which has a flat profile and occurs 500 ps before the main pulse, and a pedestal component caused by optical parametric chirped pulse amplifier (OPCPA) pump-induced noise and random spectral phase noise. This pedestal grows exponentially in time from the leakage component level to the foot of the main pulse. Figure 1 (a) shows the measured temporal contrast of 10−11 in the several hundred picoseconds range. The component from −500 ps to −100 ps for 10−10 contrast is an order of magnitude greater than that for a contrast of 10−11. Refer to Refs. [22

22. H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, “High-spatiotemporal-quality petawatt-class laser system,” Appl. Opt. 49, 2105–2115 (2010). [CrossRef] [PubMed]

, 23

23. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, “High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system,” Opt. Lett. 35, 1497–1499 (2010). [CrossRef] [PubMed]

] for further details about the pre-pulse. To investigate the influence of the contrast ratio on the CE, the contrast ratio of the leakage pulse was varied from 10−7 to 10−11 by controlling the operation conditions of the pulse cleaner and the optical shutters in the front-end stage of the system. An f/2.67 gold-coated off-axis parabolic mirror was used to focus a p-polarized laser beam at an incident angle of 22.5° relative to the target normal, as shown in Fig. 1(b). 100-μm-thick Mo and Ag planar targets were mounted on a motorized translation stage. The focal spot size was varied by translating the target along the laser beam, while the total energy at the target remained constant. In this way, the average laser intensity on the target was varied from 1 × 1016 to 4 × 1019 W/cm2.

Fig. 1 Experimental setup. (a) Measured temporal contrast, the intensity is normalized to the peak of main pulse. The spiky signals appearing around the main pulse were identified as artifacts. (b) Schematic of the experimental setup.

The absolute yield of x-rays was measured with a back-illuminated CCD operated in single-photon counting mode [24

24. C. Fourment, N. Arazam, C. Bonte, T. Caillaud, D. Descamps, F. Dorchies, M. Harmand, S. Hulin, S. Petit, and J. J. Santos, “Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources,” Rev. Sci. Instrum. 80, 083505 (2009). [CrossRef] [PubMed]

]. The spectral sensitivity of the CCD was absolutely calibrated using radio isotopes. The CCD was placed 896 mm from the x-ray source. A stack of Ni filters was used to reduce the x-ray flux on the CCD chip to less than one photon per pixel. The Ni filters provide a smooth attenuation curve throughout the measured energy range. Visible light and bremsstrahlung x-rays were also prevented from the CCD by the Ni filters. To exclude false signals generated by hot electron bombardment of the CCD, we inserted a pair of permanent magnets to deflect hot electrons. Figure 2 shows a typical spectrum of K shell lines obtained by the single photon counting CCD for the case of Ag. Both Ag and lines are clearly distinguished. Assuming an isotropic emission of x-ray in space, the absolute emission yield can be derived by integrating the numbers of photon detected on CCD over 4π steradians. When counting the number of photons that reach the CCD Np, the photon flux per steradian Nx is given by Nx = Np/(Ω × QE(ν) × T(ν)), where QE(ν) is the quantum efficiency of the CCD and T(ν) is the transmission of the filters for photons with a frequency of ν. Ω is the solid angle of the CCD chip.

Fig. 2 Spectrum of the laser produced K shell lines from Ag target.

3. Results and discussion

Figure 3 shows the CE per unit solid angle as a function of the target position with respect to the best focus. In order to investigate the effect of contrast ratio, we first studied the x-ray yield for a poor contrast ratio case (10−7; a typical contrast ratio in most chirped pulse amplifier (CPA) systems) as a reference. A strong dependence of x-ray yield on the contrast ratio is observed: the CEs increases with improving contrast ratio. The asymmetry about the best focus, in particular for the Ag target, is not fully understood yet, but a nonuniform intensity distribution on target may affect the overall x-ray generation through the dependence of laser-plasma interaction and the hot electron velocity distribution on the local laser intensity. Figure 4 shows the CEs obtained with contrasts of 10−10 for Mo and 10−11 for Ag as functions of the laser intensity. For both positive and negative offsets, the x-ray yield increases with increasing laser intensity.

Fig. 3 yield as a function of offset. Positive offset means the distance from the focusing mirror to the target is larger than the focal length. (a) Mo. (b) Ag.
Fig. 4 Dependence of yield on laser intensity. (a) Mo, contrast 10−10. (b) Ag, contrast 10−11.

4. Conclusion

line generation using a clean laser pulse has been experimentally investigated and high CEs have been demonstrated. This CE enhancement is ascribed to using a clean laser pulse. In this experiment, pre-plasma formation can be suppressed by using a laser contrast ratio higher than 10−10. The very small scale pre-plasma not only enhances laser absorption, but also results in a suitable hot electron energy distribution for generating photons. The yield is significantly enhanced by the combination of these two effects.

Acknowledgments

The authors would like to thank the J-KAREN laser operation group. This work was partly supported by the “Mono-energetic quantum beam science with petawatt lasers” of MEXT, and performed under the Common-Use Facility Program of JAEA.

References and links

1.

R. Stephens, R. Snavely, Y. Aglitskiy, F. Amiranoff, C. Andersen, D. Batani, S. Baton, T. Cowan, R. Freeman, T. Hall, S. Hatchett, J. Hill, M. Key, J. King, J. Koch, M. Koenig, A. MacKinnon, K. Lancaster, E. Martinolli, P. Norreys, E. Perelli-Cippo, M. Le Gloahec, C. Rousseaux, J. Santos, and F. Scianitti, “Kα fluorescence measurement of relativistic electron transport in the context of fast ignition,” Phys. Rev. E 69, 066414 (2004). [CrossRef]

2.

A. L. Kritcher, P. Neumayer, C. R. D. Brown, P. Davis, T. Doeppner, R. W. Falcone, D. O. Gericke, G. Gregori, B. Holst, O. L. Landen, H. J. Lee, E. C. Morse, A. Pelka, R. Redmer, M. Roth, J. Vorberger, K. Wuensch, and S. H. Glenzer, “Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering,” Phys. Rev. Lett. 103, 245004 (2009). [CrossRef]

3.

S. Moon and D. Eder, “Theoretical investigation of an ultrashort-pulse coherent x-ray source at 45 angstrom,” Phys. Rev. A 57, 1391 (1998). [CrossRef]

4.

S. Fujioka, H. Takabe, N. Yamamoto, D. Salzmann, F. Wang, H. Nishimura, Y. Li, Q. Dong, S. Wang, Y. Zhang, Y.-J. Rhee, Y.-W. Lee, J.-M. Han, M. Tanabe, T. Fujiwara, Y. Nakabayashi, G. Zhao, J. Zhang, and K. Mima, “X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion,” Nat. Phys. 5, 821–825 (2009). [CrossRef]

5.

J. Kieffer, A. Krol, Z. Jiang, C. Chamberlain, E. Scalzetti, and Z. Ichalalene, “Future of laser-based X-ray sources for medical imaging,” Appl. Phys. B 74, 75–81 (2002). [CrossRef]

6.

K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, “Femtosecond x-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003). [CrossRef] [PubMed]

7.

M. Nishikino, K. Sato, N. Hasegawa, M. Ishino, S. Ohshima, Y. Okano, T. Kawachi, H. Numasaki, T. Teshima, and H. Nishimura, “Note: application of laser produced plasma K alpha x-ray probe in radiation biology,” Rev. Sci. Instrum. 81, 026107 (2010). [CrossRef] [PubMed]

8.

S. Katsutoshi, N. Masaharu, O. Yasuaki, O. Shin-suke, H. Noboru, I. Masahiko, K. Tetsuya, N. Hodaka, T. Teruki, and N. Hiroaki, “γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation,” Radiat. Res. 174, 436–445 (2010). [CrossRef]

9.

P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Controlled Fusion 38, 769–793 (1996). [CrossRef]

10.

T. Feurer, W. Theobald, R. Sauerbrey, I. Uschmann, D. Altenbernd, U. Teubner, P. Gibbon, E. Forster, G. Malka, and J. Miquel, “Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser solid interactions at ultrahigh intensity,” Phys. Rev. E 56, 4608–4614 (1997). [CrossRef]

11.

J. Yu, Z. Jiang, J. Kieffer, and A. Krol, “Hard x-ray emission in high intensity femtosecond laser-target interaction,” Phys. Plasmas 6, 1318–1322 (1999). [CrossRef]

12.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008). [CrossRef] [PubMed]

13.

A. J. Kemp, Y. Sentoku, and M. Tabak, “Hot-electron energy coupling in ultraintense laser-matter interaction,” Phys. Rev. Lett. 101, 075004 (2008). [CrossRef] [PubMed]

14.

H. B. Cai, K. Mima, A. Sunahara, T. Johzaki, H. Nagatomo, S. P. Zhu, and X. T. He, “Prepulse effects on the generation of high energy electrons in fast ignition scheme,” Phys. Plasmas 17, 023106 (2010). [CrossRef]

15.

S. Bastiani, A. Rousse, J. Geindre, P. Audebert, C. Quoix, G. Hamoniaux, A. Antonetti, and J. Gauthier, “Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths,” Phys. Rev. E 56, 7179–7185 (1997). [CrossRef]

16.

W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, P. Zhou, K. Sokolowski-Tinten, D. von der Linde, M. Masek, P. Gibbon, and U. Teubner, “Optimized k alpha x-ray flashes from femtosecond-laser-irradiated foils,” Phys. Rev. E 80, 026404 (2009). [CrossRef]

17.

K. Yasuike, M. Key, S. Hatchett, R. Snavely, and K. Wharton, “Hot electron diagnostic in a solid laser target by K-shell lines measurement from ultraintense laser-plasma interactions (3×1020 W/cm2,≤400 J),” Rev. Sci. Instrum. 72, 1236–1240 (2001). [CrossRef]

18.

L. Chen, P. Forget, S. Fourmaux, J. Kieffer, A. Krol, C. Chamberlain, B. Hou, J. Nees, and G. Mourou, “Study of hard x-ray emission from intense femtosecond Ti:sapphire laser-solid target interactions,” Phys. Plasmas 11, 4439–4445 (2004). [CrossRef]

19.

H. Park, D. Chambers, H. Chung, R. Clarke, R. Eagleton, E. Giraldez, T. Goldsack, R. Heathcote, N. Izumi, M. Key, J. King, J. Koch, O. Landen, A. Nikroo, P. Patel, D. Price, B. Remington, H. Robey, R. Snavely, D. Steinman, R. Stephens, C. Stoeckl, M. Storm, M. Tabak, W. Theobald, R. Town, J. Wickersham, and B. Zhang, “High-energy Kα radiography using high-intensity, short-pulse lasers,” Phys. Plasmas 13, 056309 (2006). [CrossRef]

20.

S. Fourmaux, C. Serbanescu, R. E. Kincaid, J. A. Krol, and J. C. Kieffer, “Kα x-ray emission characterization of 100 Hz, 15 mJ femtosecond laser system with high contrast ratio,” Appl. Phys. B 94, 569–575 (2009). [CrossRef]

21.

B. Westover, A. MacPhee, C. Chen, D. Hey, T. Ma, B. Maddox, H.-S. Park, B. Remington, and F. N. Beg, “Study of silver Kα and bremsstrahlung radiation from short-pulse laser-matter interactions with applications for x-ray radiography,” Phys. Plasmas 17, 082703 (2010). [CrossRef]

22.

H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, “High-spatiotemporal-quality petawatt-class laser system,” Appl. Opt. 49, 2105–2115 (2010). [CrossRef] [PubMed]

23.

H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, “High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system,” Opt. Lett. 35, 1497–1499 (2010). [CrossRef] [PubMed]

24.

C. Fourment, N. Arazam, C. Bonte, T. Caillaud, D. Descamps, F. Dorchies, M. Harmand, S. Hulin, S. Petit, and J. J. Santos, “Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources,” Rev. Sci. Instrum. 80, 083505 (2009). [CrossRef] [PubMed]

25.

S. Wilks, W. Kruer, M. Tabak, and A. Langdon, “Absorption of ultra-intense laser-pulses,” Phys. Rev. Lett. 69, 1383–1386 (1992). [CrossRef] [PubMed]

26.

D. Salzmann, C. Reich, I. Uschmann, E. Forster, and P. Gibbon, “Theory of Kα generation by femtosecond laser-produced hot electrons in thin foils,” Phys. Rev. E 65, 036402 (2002). [CrossRef]

27.

A. S. Pirozhkov, I. W. Choi, J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, I. J. Kim, N. Hafz, C. M. Kim, K. H. Pae, Y. C. Noh, D. K. Ko, J. Lee, A. P. L. Robinson, P. Foster, S. Hawkes, M. Streeter, C. Spindloe, P. McKenna, D. C. Carroll, C. G. Wahlstrom, M. Zepf, D. Adams, B. Dromey, K. Markey, S. Kar, Y. T. Li, M. H. Xu, H. Nagatomo, M. Mori, A. Yogo, H. Kiriyama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, H. Sugiyama, T. Z. Esirkepov, H. Okada, S. Kondo, S. Kanazawa, Y. Nakai, A. Akutsu, T. Motomura, M. Tanoue, T. Shimomura, M. Ikegami, I. Daito, M. Kando, T. Kameshima, P. Bolton, S. V. Bulanov, H. Daido, and D. Neely, “Diagnostic of laser contrast using target reflectivity,” Appl. Phys. Lett. 94, 241102 (2009). [CrossRef]

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(350.5400) Other areas of optics : Plasmas

ToC Category:
X-ray Optics

History
Original Manuscript: October 28, 2010
Revised Manuscript: December 13, 2010
Manuscript Accepted: January 19, 2011
Published: February 24, 2011

Citation
Z. Zhang, M. Nishikino, H. Nishimura, T. Kawachi, A. S. Pirozhkov, A. Sagisaka, S. Orimo, K. Ogura, A. Yogo, Y. Okano, S. Ohshima, S. Fujioka, H. Kiriyama, K. Kondo, T. Shimomura, and S. Kanazawa, "Efficient multi-keV x-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse," Opt. Express 19, 4560-4565 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Stephens, R. Snavely, Y. Aglitskiy, F. Amiranoff, C. Andersen, D. Batani, S. Baton, T. Cowan, R. Freeman, T. Hall, S. Hatchett, J. Hill, M. Key, J. King, J. Koch, M. Koenig, A. MacKinnon, K. Lancaster, E. Martinolli, P. Norreys, E. Perelli-Cippo, M. Le Gloahec, C. Rousseaux, J. Santos, and F. Scianitti, “Kα fluorescence measurement of relativistic electron transport in the context of fast ignition,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 066414 (2004). [CrossRef]
  2. A. L. Kritcher, P. Neumayer, C. R. D. Brown, P. Davis, T. Doeppner, R. W. Falcone, D. O. Gericke, G. Gregori, B. Holst, O. L. Landen, H. J. Lee, E. C. Morse, A. Pelka, R. Redmer, M. Roth, J. Vorberger, K. Wuensch, and S. H. Glenzer, “Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering,” Phys. Rev. Lett. 103, 245004 (2009). [CrossRef]
  3. S. Moon and D. Eder, “Theoretical investigation of an ultrashort-pulse coherent x-ray source at 45 angstrom,” Phys. Rev. A 57, 1391 (1998). [CrossRef]
  4. S. Fujioka, H. Takabe, N. Yamamoto, D. Salzmann, F. Wang, H. Nishimura, Y. Li, Q. Dong, S. Wang, Y. Zhang, Y.-J. Rhee, Y.-W. Lee, J.-M. Han, M. Tanabe, T. Fujiwara, Y. Nakabayashi, G. Zhao, J. Zhang, and K. Mima, “X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion,” Nat. Phys. 5, 821–825 (2009). [CrossRef]
  5. J. Kieffer, A. Krol, Z. Jiang, C. Chamberlain, E. Scalzetti, and Z. Ichalalene, “Future of laser-based X-ray sources for medical imaging,” Appl. Phys. B 74, 75–81 (2002). [CrossRef]
  6. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, “Femtosecond x-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003). [CrossRef] [PubMed]
  7. M. Nishikino, K. Sato, N. Hasegawa, M. Ishino, S. Ohshima, Y. Okano, T. Kawachi, H. Numasaki, T. Teshima, and H. Nishimura, “Note: application of laser produced plasma K alpha x-ray probe in radiation biology,” Rev. Sci. Instrum. 81, 026107 (2010). [CrossRef] [PubMed]
  8. S. Katsutoshi, N. Masaharu, O. Yasuaki, O. Shin-suke, H. Noboru, I. Masahiko, K. Tetsuya, N. Hodaka, T. Teruki, and N. Hiroaki, “γ -H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation,” Radiat. Res. 174, 436–445 (2010). [CrossRef]
  9. P. Gibbon, and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Contr. Fusion 38, 769–793 (1996). [CrossRef]
  10. T. Feurer, W. Theobald, R. Sauerbrey, I. Uschmann, D. Altenbernd, U. Teubner, P. Gibbon, E. Forster, G. Malka, and J. Miquel, “Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser solid interactions at ultrahigh intensity,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 4608–4614 (1997). [CrossRef]
  11. J. Yu, Z. Jiang, J. Kieffer, and A. Krol, “Hard x-ray emission in high intensity femtosecond laser-target interaction,” Phys. Plasmas 6, 1318–1322 (1999). [CrossRef]
  12. M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008). [CrossRef] [PubMed]
  13. A. J. Kemp, Y. Sentoku, and M. Tabak, “Hot-electron energy coupling in ultraintense laser-matter interaction,” Phys. Rev. Lett. 101, 075004 (2008). [CrossRef] [PubMed]
  14. H. B. Cai, K. Mima, A. Sunahara, T. Johzaki, H. Na-gatomo, S. P. Zhu, and X. T. He, “Prepulse effects on the generation of high energy electrons in fast ignition scheme,” Phys. Plasmas 17, 023106 (2010). [CrossRef]
  15. S. Bastiani, A. Rousse, J. Geindre, P. Audebert, C. Quoix, G. Hamoniaux, A. Antonetti, and J. Gauthier, “Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56, 7179–7185 (1997). [CrossRef]
  16. W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, P. Zhou, K. Sokolowski-Tinten, D. von der Linde, M. Masek, P. Gibbon, and U. Teubner, “Optimized k alpha x-ray flashes from femtosecond-laser-irradiated foils,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 026404 (2009). [CrossRef]
  17. K. Yasuike, M. Key, S. Hatchett, R. Snavely, and K. Wharton, “Hot electron diagnostic in a solid laser target by K-shell lines measurement from ultraintense laser-plasma interactions (3x1020 W/cm2,≤400 J),” Rev. Sci. Instrum. 72, 1236–1240 (2001). [CrossRef]
  18. L. Chen, P. Forget, S. Fourmaux, J. Kieffer, A. Krol, C. Chamberlain, B. Hou, J. Nees, and G. Mourou, “Study of hard x-ray emission from intense femtosecond Ti:sapphire laser-solid target interactions,” Phys. Plasmas 11, 4439–4445 (2004). [CrossRef]
  19. H. Park, D. Chambers, H. Chung, R. Clarke, R. Eagleton, E. Giraldez, T. Goldsack, R. Heathcote, N. Izumi, M. Key, J. King, J. Koch, O. Landen, A. Nikroo, P. Patel, D. Price, B. Remington, H. Robey, R. Snavely, D. Steinman, R. Stephens, C. Stoeckl, M. Storm, M. Tabak, W. Theobald, R. Town, J. Wickersham, and B. Zhang, “High-energy Kα radiography using high-intensity, short-pulse lasers,” Phys. Plasmas 13, 056309 (2006). [CrossRef]
  20. S. Fourmaux, C. Serbanescu, R. E. Kincaid, J. A. Krol, and J. C. Kieffer, “Kα x-ray emission characterization of 100 Hz, 15 mJ femtosecond laser system with high contrast ratio,” Appl. Phys. B 94, 569–575 (2009). [CrossRef]
  21. B. Westover, A. MacPhee, C. Chen, D. Hey, T. Ma, B. Maddox, H.-S. Park, B. Remington, and F. N. Beg, “Study of silver Kα and bremsstrahlung radiation from short-pulse laser-matter interactions with applications for x-ray radiography,” Phys. Plasmas 17, 082703 (2010). [CrossRef]
  22. H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, “High-spatiotemporal-quality petawatt-class laser system,” Appl. Opt. 49, 2105–2115 (2010). [CrossRef] [PubMed]
  23. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, “High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system,” Opt. Lett. 35, 1497–1499 (2010). [CrossRef] [PubMed]
  24. C. Fourment, N. Arazam, C. Bonte, T. Caillaud, D. Descamps, F. Dorchies, M. Harmand, S. Hulin, S. Petit, and J. J. Santos, “Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources,” Rev. Sci. Instrum. 80, 083505 (2009). [CrossRef] [PubMed]
  25. S. Wilks, W. Kruer, M. Tabak, and A. Langdon, “Absorption of ultra-intense laser-pulses,” Phys. Rev. Lett. 69, 1383–1386 (1992). [CrossRef] [PubMed]
  26. D. Salzmann, C. Reich, I. Uschmann, E. Forster, and P. Gibbon, “Theory of Kα generation by femtosecond laser-produced hot electrons in thin foils,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 036402 (2002). [CrossRef]
  27. A. S. Pirozhkov, I. W. Choi, J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, I. J. Kim, N. Hafz, C. M. Kim, K. H. Pae, Y. C. Noh, D. K. Ko, J. Lee, A. P. L. Robinson, P. Foster, S. Hawkes, M. Streeter, C. Spindloe, P. McKenna, D. C. Carroll, C. G. Wahlstrom, M. Zepf, D. Adams, B. Dromey, K. Markey, S. Kar, Y. T. Li, M. H. Xu, H. Nagatomo, M. Mori, A. Yogo, H. Kiriyama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, H. Sugiyama, T. Z. Esirkepov, H. Okada, S. Kondo, S. Kanazawa, Y. Nakai, A. Akutsu, T. Motomura, M. Tanoue, T. Shimomura, M. Ikegami, I. Daito, M. Kando, T. Kameshima, P. Bolton, S. V. Bulanov, H. Daido, and D. Neely, “Diagnostic of laser contrast using target reflectivity,” Appl. Phys. Lett. 94, 241102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited