OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 19, Iss. 7 — Mar. 28, 2011
  • pp: 6284–6289
« Show journal navigation

High quality factor etchless silicon photonic ring resonators

Lian-Wee Luo, Gustavo S. Wiederhecker, Jaime Cardenas, Carl Poitras, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6284-6289 (2011)
http://dx.doi.org/10.1364/OE.19.006284


View Full Text Article

Acrobat PDF (1057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high quality factor etchless silicon photonic ring resonators fabricated by selective thermal oxidation of silicon without the silicon layer being exposed to any plasma etching throughout the fabrication process. We achieve a high intrinsic quality factor of 510,000 in 50 µm-radius ring resonators, corresponding to a ring loss of 0.8 dB/cm. The device has a total chip insertion loss of 2.5 dB, achieved by designing etchless silicon inverse nanotapers at both the input and output of the chip.

© 2011 OSA

1. Introduction

Silicon photonics has been studied extensively for on-chip optical interconnects during the past decade as optical interconnects offer a larger bandwidth and lower power consumption in microelectronic chips [1

1. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quant. 6(6), 1312–1317 (2000). [CrossRef]

4

4. M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quant. 12(6), 1699–1705 (2006). [CrossRef]

]. To realize the goal of optical interconnects in silicon chips, storing or slowing down of optical signals is essential during the routing of the signals. Several on-chip optical buffers based on silicon ring resonators have been demonstrated [5

5. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]

7

7. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]

]. However, the major challenge faced by these silicon-based optical buffers is the need for low-loss silicon waveguides and high-Q ring resonators.

There are two types of silicon waveguides commonly used by the silicon photonic community, namely rib waveguides and strip waveguides. Rib waveguides with widths of 1-8 μm have exhibited losses down to 0.1 dB/cm but their minimum bending radius is limited to hundreds of micrometers [8

8. U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Tech. L 8(5), 647–648 (1996). [CrossRef]

16

16. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009). [CrossRef] [PubMed]

]. To obtain more compact silicon ring resonators, strip waveguides with dimensions approximately 500 nm wide by 250 nm thick are employed [5

5. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]

7

7. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]

,17

17. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Tech. L 16(5), 1328–1330 (2004). [CrossRef]

21

21. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007). [CrossRef] [PubMed]

]. These strip waveguides have demonstrated intrinsic quality factors up to 400,000 in 10 μm-radius ring resonators with a ring loss not lower than 1.8 dB/cm at λ = 1.53 μm. Here we demonstrate a different type of silicon ring resonators which exhibit lower propagation loss than the strip waveguides and possess smaller bending radius than the rib waveguides.

Losses in silicon waveguides originate largely from the damage of the silicon surfaces by the dry etching processes [22

22. G. S. Oehrlein, “Dry Etching Damage of Silicon - a Review,” Mat. Sci. Eng. B. 4(1-4), 441–450 (1989). [CrossRef]

]. The reactive ion etching (RIE) induces surface modifications and results in both the increased scattering losses at the sidewalls due to silicon waveguide roughness and the increased absorption sites at Si/SiO2 interface due to surface residues and lattice damage [23

23. F. P. Payne and J. P. R. Lacey, “A Theoretical-Analysis of Scattering Loss from Planar Optical Wave-Guides,” Opt. Quantum Electron. 26(10), 977–986 (1994). [CrossRef]

25

25. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]

]. In order to minimize these losses, we have previously demonstrated an etchless silicon waveguide fabrication process based on selective thermal oxidation of silicon [26

26. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]

]. This etchless silicon waveguide fabrication minimizes the waveguide losses resulting from the dry etching by not exposing the silicon surface to any plasma etching throughout the fabrication process. The etchless silicon waveguides possess the advantages of both the low loss of rib waveguides and the small bending radius of strip waveguides.

In this paper, based on the etchless silicon fabrication, we design and fabricate high-Q etchless silicon photonic ring resonators. We achieve a high intrinsic quality factor of 510,000 in 50 μm-radius ring resonators, corresponding to a ring loss of 0.8 dB/cm. We also design etchless silicon inverse nanotapers to enable efficient coupling from the lensed fiber into the chip. The device shows a low coupling loss of approximately 1.5 dB per facet, corresponding to 71% fiber-waveguide coupling efficiency.

2. Etchless silicon photonic ring resonators fabrication process flow

3. Etchless silicon photonic ring resonators design

The 800 nm wide etchless silicon waveguide forming the ring resonator supports only one mode, i.e. the fundamental TE mode (see Fig. 3(a)
Fig. 3 Transverse electric (TE) mode profile (Ex-component) of (a) Etchless silicon waveguide. (b) Etchless silicon inverse nanotaper.
). The advantage of supporting only the fundamental TE mode is that the polarization mode conversion is minimized, thus reducing the crosstalk in polarization. The 800 nm waveguide has an effective index of 1.6 at λ = 1.55 μm and a mode size of 1 μm wide by 0.52 μm high. On the other hand, a lensed fiber has an effective index of 1.468 and a mode field diameter of 2.5 μm. The coupling of light directly from the lensed fiber into the 800 nm waveguide results in a measured coupling loss of more than 10 dB. This coupling loss is high due to both the refractive index mismatch and mode mismatch between the lensed fiber and the etchless silicon waveguide. To minimize the coupling loss, a 220 nm wide etchless silicon inverse nanotaper with a taper length of 100 μm is integrated at both the input waveguide and output waveguide [30

30. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]

]. The designed inverse nanotaper has an effective index of 1.453 and a mode size of 5 µm wide by 2 µm high (see Fig. 3(b)). Due to this improved match in refractive index and mode size, the coupling loss from the lensed fiber into the inverse nanotaper is reduced to approximately 1.5 dB. This measured coupling loss is one of the lowest demonstrated in silicon photonic devices.

4. Results and discussions

We demonstrate a high-Q 50 μm-radius etchless silicon ring resonator with an ultra-low total chip insertion loss. We couple a tunable laser light source from a lensed fiber into the etchless silicon inverse nanotaper at the input of the chip through a polarization controller. The light from the output of the chip is then collimated through a lens and collected at a photodetector to measure the total chip insertion loss of TE-polarized light. We observe a clean transmission spectrum, i.e. the Fabry-Perot modulation between the two end facets of the chip is negligible due to the well-designed etchless silicon inverse nanotaper (see Fig. 4(a)
Fig. 4 (a) Through-port transmission spectrum of the ring resonator in transverse electric (TE) polarization. (b) Normalized transmission spectrum at λ 0 = 1531.416 nm.
).

We measure an ultra-low total chip insertion loss of 2.5 dB from the input lensed fiber to the photodetector at the output. This total chip insertion loss includes the propagation loss of the 1 cm long etchless silicon waveguide and the coupling loss at the chip facets. With a Lorentz fit to the resonance at λ 0 = 1531.416 nm, we measure the linewidth of the spectrum to be 5.5 pm, giving a loaded quality factor of Q loaded ~280,000 (see Fig. 4(b)). The ring is slightly under-coupled at this resonant wavelength. The intrinsic quality factor Qint of the ring can be written as [31

31. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]

]:
Qint=2Qloaded1+T0,
(1)
where T 0 is the fraction of transmitted optical power measured by the photodetector at the resonant wavelength λ 0. Using Eq. (1), with the measured T 0 = 0.007, we calculate the intrinsic quality factor Q int = 510,000.

The total propagation loss per unit length in the ring αring can be written as [32

32. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002). [CrossRef]

]:
αring=2πngQintλ0=λ0Qint×FSR×Rring,
(2)
where ng is the group index, FSR is the free spectral range, and Rring is the radius of the ring resonator. Using Eq. (2), with the measured FSR = 3.25 nm and Rring = 50 μm, we calculate the ring loss α ring = 0.8 dB/cm. We estimate the coupling loss between the lensed fiber and the etchless silicon inverse nanotaper to be approximately 1.5 dB, corresponding to 71% fiber-waveguide coupling efficiency.

5. Conclusion

We designed and fabricated high-Q etchless silicon photonic ring resonators using selective thermal oxidation of silicon without the silicon layer being exposed to any plasma etching throughout the fabrication process. We achieved a high intrinsic quality factor of 510,000 in 50 µm-radius ring resonators, corresponding to a ring loss of 0.8 dB/cm. We also realized an ultra-low total chip insertion loss of 2.5 dB with a fiber-waveguide coupling loss of approximately 1.5 dB by employing etchless silicon inverse nanotapers at both the input and output of the device chip. The low loss etchless silicon photonic ring resonators have promising applications in silicon ring resonators-based optical buffers.

Acknowledgments

The authors acknowledge use of the facilities at the Cornell Center for Materials Research, which is supported by the NSF (award number NSF DMR-0520404), and thank Malcolm Thomas and John Grazul for assistance in operating the focused ion beam and transmission electron microscope. This work was partially funded under the DARPA MTO Si-PhASER project Grant HR0011-09-0013 with the University of California, Davis, and under Grant FA9550-05-1-0414 with Stanford University. This work was performed in part at the Cornell Nanoscale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the NSF. Lian-Wee Luo acknowledges a fellowship from Agency of Science, Technology and Research (A*STAR), Singapore.

References and links

1.

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quant. 6(6), 1312–1317 (2000). [CrossRef]

2.

L. Pavesi, and D. J. Lockwood, Silicon Photonics, Topics in applied physics (Springer, Berlin; New York, 2004), pp. xvi, 397 p.

3.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel Top. Quant. 12(6), 1678–1687 (2006). [CrossRef]

4.

M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quant. 12(6), 1699–1705 (2006). [CrossRef]

5.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]

6.

Q. F. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]

7.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]

8.

U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Tech. L 8(5), 647–648 (1996). [CrossRef]

9.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28(13), 1150–1152 (2003). [CrossRef] [PubMed]

10.

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87(23), 231108 (2005). [CrossRef]

11.

H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]

12.

P. Dong, W. Qian, S. R. Liao, H. Liang, C. C. Kung, N. N. Feng, R. Shafiiha, J. A. Fong, D. Z. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010). [CrossRef] [PubMed]

13.

I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13(6), 1900–1905 (2005). [CrossRef] [PubMed]

14.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392–393 (2007). [CrossRef]

15.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” SPIE (2008).

16.

R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009). [CrossRef] [PubMed]

17.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Tech. L 16(5), 1328–1330 (2004). [CrossRef]

18.

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]

19.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005). [CrossRef]

20.

J. Niehusmann, A. Vorckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [CrossRef]

21.

S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007). [CrossRef] [PubMed]

22.

G. S. Oehrlein, “Dry Etching Damage of Silicon - a Review,” Mat. Sci. Eng. B. 4(1-4), 441–450 (1989). [CrossRef]

23.

F. P. Payne and J. P. R. Lacey, “A Theoretical-Analysis of Scattering Loss from Planar Optical Wave-Guides,” Opt. Quantum Electron. 26(10), 977–986 (1994). [CrossRef]

24.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]

25.

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]

26.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]

27.

Silvaco Athena, retrieved http://www.silvaco.com/products/process_simulation/athena.html.

28.

COMSOL 3.5a, Comsol Multiphysics ®, retrieved http://www.comsol.com/.

29.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]

30.

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]

31.

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]

32.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002). [CrossRef]

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: January 19, 2011
Revised Manuscript: March 7, 2011
Manuscript Accepted: March 8, 2011
Published: March 18, 2011

Citation
Lian-Wee Luo, Gustavo S. Wiederhecker, Jaime Cardenas, Carl Poitras, and Michal Lipson, "High quality factor etchless silicon photonic ring resonators," Opt. Express 19, 6284-6289 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quant. 6(6), 1312–1317 (2000). [CrossRef]
  2. L. Pavesi, and D. J. Lockwood, Silicon Photonics, Topics in applied physics (Springer, Berlin; New York, 2004), pp. xvi, 397 p.
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel Top. Quant. 12(6), 1678–1687 (2006). [CrossRef]
  4. M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quant. 12(6), 1699–1705 (2006). [CrossRef]
  5. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  6. Q. F. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]
  7. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010). [CrossRef] [PubMed]
  8. U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Tech. L 8(5), 647–648 (1996). [CrossRef]
  9. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28(13), 1150–1152 (2003). [CrossRef] [PubMed]
  10. M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87(23), 231108 (2005). [CrossRef]
  11. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]
  12. P. Dong, W. Qian, S. R. Liao, H. Liang, C. C. Kung, N. N. Feng, R. Shafiiha, J. A. Fong, D. Z. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010). [CrossRef] [PubMed]
  13. I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13(6), 1900–1905 (2005). [CrossRef] [PubMed]
  14. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392–393 (2007). [CrossRef]
  15. F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),” SPIE (2008).
  16. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009). [CrossRef] [PubMed]
  17. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Tech. L 16(5), 1328–1330 (2004). [CrossRef]
  18. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  19. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quant. 11(1), 232–240 (2005). [CrossRef]
  20. J. Niehusmann, A. Vorckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [CrossRef]
  21. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007). [CrossRef] [PubMed]
  22. G. S. Oehrlein, “Dry Etching Damage of Silicon - a Review,” Mat. Sci. Eng. B. 4(1-4), 441–450 (1989). [CrossRef]
  23. F. P. Payne and J. P. R. Lacey, “A Theoretical-Analysis of Scattering Loss from Planar Optical Wave-Guides,” Opt. Quantum Electron. 26(10), 977–986 (1994). [CrossRef]
  24. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]
  25. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  26. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]
  27. Silvaco Athena, retrieved http://www.silvaco.com/products/process_simulation/athena.html .
  28. COMSOL 3.5a, Comsol Multiphysics ®, retrieved http://www.comsol.com/ .
  29. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  30. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  31. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]
  32. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited