OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7537–7545
« Show journal navigation

Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme

Sandeep Kumar, Heung-Sik Kang, and Dong Eon Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7537-7545 (2011)
http://dx.doi.org/10.1364/OE.19.007537


View Full Text Article

Acrobat PDF (1035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation of isolated attosecond hard x-ray pulse has been studied under the enhanced self-amplified spontaneous emission (ESASE) scheme with the density and energy modulation of an electron bunch. It is demonstrated in simulation that an isolated attosecond hard x-ray pulse of a high contrast ratio can be produced by adjusting a driver laser wavelength and the energy distribution of an electron bunch. An isolated attosecond pulse of ~146 attosecond full-width half-maximum (FWHM) at 0.1 nm wavelength is obtained with a saturation length of 34 meter for the electron beam parameters of Korean X-ray Free Electron laser.

© 2011 OSA

1. Introduction

Attosecond science is to measure, control and ultimately manipulate attosecond time-scale electron dynamics in matter. These dynamics determine how physical and chemical changes occur at a fundamental level. To study these dynamics we need an isolated single pulse in attosecond time scale. The recent research has confirmed and has shown that it is indeed possible to generate a single isolated pulse of attosecond duration [1

1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef] [PubMed]

7

7. H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100(10), 103906 (2008). [CrossRef] [PubMed]

] and moreover its applications [8

8. M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446(7136), 627–632 (2007). [CrossRef] [PubMed]

10

10. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002). [CrossRef] [PubMed]

] has opened a door to the investigation of ever faster processes in nature such as electronic transitions in atoms and molecules that have never been explored before.

To achieve atomic spatial resolution, the radiation wavelength needs to be pushed to ~0.1 nm or shorter; consequently an isolated attosecond pulse at 0.1 nm or shorter is highly desirable for attosecond temporal resolution and nanometer spatial resolution. During the last decade, an isolated attosecond XUV pulse has been successfully produced using the high-harmonics generation (HHG) method from a neutral gas [3

3. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]

10

10. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002). [CrossRef] [PubMed]

] in the soft x-ray region. For hard x-rays, ideas using Thomson scattering [11

11. K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. E. Kim, “Relativistic nonlinear Thomson scattering as attosecond x-ray source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 026502 (2003). [CrossRef] [PubMed]

,12

12. D. E. Kim, H. Lee, S. Chung, and K. Lee, “Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime,” N. J. Phys. 11(6), 063050 (2009). [CrossRef]

], Compton backscattering [13

13. S. Y. Chung, M. Yoon, and D. E. Kim, “Generation of attosecond x-ray and gamma-ray via Compton backscattering,” Opt. Express 17(10), 7853–7861 (2009). [CrossRef] [PubMed]

] and free electron laser (FEL) have been proposed.

In FEL there are two leading schemes; one is self-amplified spontaneous emission (SASE) scheme [14

14. A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92(22), 224801 (2004). [CrossRef] [PubMed]

19

19. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Terawatt-scale sub-10-fs laser technology –key to generation of GW-level attosecond pulses in x-ray free electron laser,” Opt. Commun. 237(1-3), 153–164 (2004). [CrossRef]

] and other is the high gain harmonic generation (HGHG) scheme [20

20. R. Bonifacio, L. D. S. Souza, P. Pierini, and E. T. Scharlemann, “Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier,” Nucl. Instrum. Methods Phys. Res. A 296(1-3), 787–790 (1990). [CrossRef]

25

25. D. Xiang and G. Stupakov, “Echo-enabled harmonic generation free electron laser,” Phys. Rev. ST Accel. Beams 12(3), 030702 (2009). [CrossRef]

]. A free electron laser based upon the principle of SASE has been considered as a potential source of obtaining femtosecond (fs), short wavelength x-ray pulses. But the problem lies in limited temporal coherence of the output radiation of a SASE FEL. Moreover, this radiation consists of many sub-fs “spikes” whose arrival time is random on a shot-to-shot basis. This prevents the straightforward use of SASE FEL in pump probe experiments at the attosecond time scale.

The introduction of a conventional optical laser to SASE FEL scheme could enhance the electron peak current, thereby leading to the considerable reduction in jitter and the FEL length. This is called enhanced SASE (ESASE) scheme. The ESASE technique [15

15. A. A. Zholents, “Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers,” Phys. Rev. ST Accel. Beams 8(4), 040701 (2005). [CrossRef]

] employs an optical laser to induce energy modulation in an electron bunch to create a strong current peak of a short duration. This leads to the generation of short duration (τ < 500 attosecond) output pulses from an FEL together with the absolute synchronization of x-ray probe pulses to laser pump pulses, allowing for pump-probe experiments. Up to now, all the works cited above produces a train of attosecond pulses. This may be not so useful for experiments with attosecond temporal resolution.

In this paper, we demonstrate that an isolated attosecond pulse can be indeed produced by manipulating electron-beam energy distributions together with density modulation in ESASE scheme for a given laser wavelength. An optical laser with a high intensity is used for the energy modulation of a relativistic electron bunch inside a wiggler. This energy-modulated electron bunch is further compressed by the chicane of four dipole-magnets. The FWHM pulse duration, electron-bunch energy distributions are optimized to control the side current-peaks and to obtain single isolated attosecond pulse.

2. Method

Figure 1
Fig. 1 ESASE scheme for attosecond pulse generation.
shows a schematic of the ESASE scheme considered in this study. An electron beam exits from a linear accelerator and is sent to a double-period wiggler magnet. At the same time, a co-propagating few-cycle carrier envelop-phase (CEP) stabilized laser is used to further induce the electron energy modulation inside the double-period wiggler. This wiggler magnet acts as an energy modulator. Only a small longitudinal section of the electron beam interacts with the laser and emerges from the wiggler with energy modulation. The peak power of the laser is selected in such a way that the amplitude of energy modulation significantly exceeds the uncorrelated energy spread of the electrons. The electron beam now enters a chicane, which introduces dispersion. This is a set of four magnets arranged in the configuration shown in Fig. 1. Here higher-energy electrons travel a shorter path and lower-energy electrons travel a longer path. In general this leads to the density modulation, producing microbunching of the electrons at laser wavelength spacing and periodic enhancement of the peak current. The increase in the peak current is accompanied by a corresponding increase in the energy spread of electrons. Finally the electron-bunch enters a long undulator to produce perfect microbunches and radiation at x-ray wavelength via standard SASE process.

For this analysis, the laser has the lowest Gaussian eigenmode TEM00 (Transverse Electro Magnetic) with zero offset [26]. We consider a planar wiggler,
{By=B0coskwzBz=0
(1)
where kw=2π/λw and λw is the wiggler period. The FEL resonance condition λL=(λw/2γw2)(1+Kw2/2)is maintained for the better energy exchange between the laser and electron beam. λL is the laser wavelength and γw the relativistic factor of the electron beam inside the wiggler, Kw the wiggler parameter,Kw=eB0λw/2πmc, where m, e are the electron mass and charge, c the speed of light, andB0 the peak magnetic field.

Due to SASE process in an undulator of λuand undulator parameter Kr=eBrλu/2πmc, where Br is the peak magnetic field, x-rays at a wavelength of λr=(λu/2γr2)(1+Kr2/2) is produced, where γr is the relativistic factor for the electron beam energy inside undulator.

As mentioned, the electron bunch is modulated in energy via interaction with a laser, and then, in density by a chicane. These are shown in Fig. 2
Fig. 2 The longitudinal energy distribution [(a), (b), (c)] and instantaneous current profile (d), (e), (f)] of electron bunch along the bunch length before wiggler, after wiggler, and after chicane. The average current is 3 kA and the bunch length is ~20 μm. The simulation has been done with a laser power 13 GW, λL = 1200 nm and 7.5 fs FWHM pulse duration.
. Figure 2(a)2(c) show the longitudinal energy distribution of a 20 μm long (average-current 3 kA) electron bunch before wiggler, after wiggler and after chicane, respectively.

One can see from Fig. 2(a) that before wiggler, there is a small energy-spread in the central region of electron bunch; after interacting with a laser, the energy modulation resembling the oscillation of the laser field is introduced as shown in Fig. 2(b). As shown in Fig. 2(c), this modulation becomes steeper by chicane. This is manifested as current spikes in the current profile of the electron bunch as shown in Fig. 2(f). The energy spread is always kept less than FEL parameter (ΔE/E < 5.4 × 10−4) by adjusting the laser power. The corresponding current-profiles are shown in Fig. 2(d)2(f), respectively. The current profile at wiggler entrance and after wiggler look similar in magnitude and shape [Fig. 2(d) and 2(e)] but after chicane there are two enhanced spikes in the central region of electron bunch; one spike of 5.6 kA at - 0.8 μm position and other spike of 5 kA at 0.36 μm. The increase in the peak current in the central region in Fig. 2(f) is caused due to the steepening of ΔE/E profile in the energy spread of electrons [see Fig. 2(c)].

3. Simulation results

For our calculations we consider an electron beam with parameters similar to those of the electron beam of Korean X-ray FEL [27

27. H.-S. Kang and S.-H. Nam, in Proceedings of the 32nd International FEL 2010 Conference (Malmo, Sweden, Aug. 23–27, 2010), http://fel2010.maxlab.lu.se/.

]: a beam-energy of 10 GeV, (i.e. relativistic factorγ2×104), a total electron bunch-charge is 0.2 nC. The electron bunch is 12 μm (≈40 fs) long with a normalized emittance of 0.5 μm-rad, a rms energy spread of 1 MeV. We consider an 800 nm, 26 GW power and 5 fs FWHM laser for energy modulation of the electron bunch. The laser is CEP stabilized. The laser is focused to a beam-waist of 250 μm at the center of wiggler. The magnetic field inside the wiggler is described by Eq. (1) with B0 = 1.1459 T and λw = 55 cm. The momentum compaction factor R562θB2(L1+2/3LB) for the chicane magnet is 0.6 mm where θB, the bending angle of the dipole, is equal to 0.48°, L1 = 4 meter is the drift length between the first and second dipole magnet and also the length between third and fourth dipole magnet and the associated dipole length of each dipole magnet is LB = 0.3 meter. The electron beam properties at the entrance of undulator are calculated by Elegant code [28

28. M. Borland, “Elegant: A flexible SSD-compliant code for accelerator simulation,” http://www.aps.anl.gov.

]. Elegant code is a six dimensional accelerator program used to generate particle distribution and track it.

We have run a number of simulations for the electron-beam modulation for different laser wavelengths, pulse durations and energy distributions of electron bunch. We found out that the modulation of electron bunch is sensitive to these parameters. This can be observed in longitudinal energy distribution, current-profile and normalized-emittance of electron-beam before wiggler, after wiggler and after chicane.

3.1 Dependence of current profile of electron bunch on laser parameters

We consider laser wavelengths in the range of 800 nm to 2400 nm with FWHM pulse durations of 5 fs to 14 fs. The electron-beam parameters were described in the above.

Figure 3(a)
Fig. 3 (a) The longitudinal energy distribution of electron bunch before wiggler; (b) - (f), the current profile after chicane for different laser parameter, (b) λL = 800 nm & τ (FWHM) = 5 fs, (c) λL = 1200 nm & τ (FWHM) = 5 fs, (d) λL = 1200 nm & τ (FWHM) = 7.5 fs, (e) λL = 1600 nm & τ (FWHM) = 10 fs, (f) λL = 2200 nm & τ (FWHM) = 14 fs. The laser power is 26 GW. The average current is 6 kA and total bunch length is ~12 μm.
shows the longitudinal energy distribution of the electron bunch before the wiggler. In Fig. 3(b)3(f), we present the current-profiles after chicane for different laser wavelengths. For λL=800nm and a pulse width of 2πσrms=5 fs FWHM [Fig. 3(b)], note that there are three spikes in the central region of the electron bunch, generated by energy modulation and density modulation. The magnitude of the first spike is 17 kA at a position of - 0.57 μm along the bunch; that of the second spike is 28 kA at a position of 0.129 μm and the third spike is at a 9 kA at position of 0.66 μm. The background current is 6 kA. The contrast ratio between the first, second and third spike is 1.88: 3.1: 1 approximately, which is not good for producing a single pulse in FEL output.

In Fig. 3(c), we choose another wavelength 1200 nm with 5 fs FWHM. The simulation results show a single current spike of magnitude 26 kA at 0.0811 μm position and almost vanishing side spikes. This result gives a substantially higher contrast ratio of 4.33: 1 between the central spike and the side peak above the background current. Similarly, in Fig. 3(d) for 1200 nm wavelength and 7.5 fs FWHM laser, we get the main current spike of 29 kA at 0.0273 μm with two side spikes with lower magnitudes of 8.96 kA and 7 kA at −1.1 μm and 0.99 μm, respectively. The contrast ratio among these spikes is around 1.28: 4.14: 1. For 1600 nm wavelength and 10 fs FWHM laser [see Fig. 3(e)] we get two spikes with current 8.7 kA and 21 kA at −1.57 μm and −0.073 μm with contrast ratio 2.4:1. For 2200 nm wavelength and 14 fs FWHM [see Fig. 3(f)], we again get an additional side spike of 9.43 kA at −1.41 μm and the main current spike of 14 kA at 0.4699 μm with contrast ratio 1:1.48. We have done similar calculations for other wavelengths, which we do not show here. Finally, we find that 1200 nm wavelength and 5 fs FWHM candidate seems the best with good contrast ratio. Nevertheless technically the generation of such a laser pulse is challenging. Now we consider 1200 nm wavelength and 7.5 fs FWHM laser. For this case, the contrast ratio of the main current spike to the side spikes is better compared with that for other examples.

With respect to the change of the emittance through the wiggler and chicane, we present the normalized emittance of electron bunch in a plane perpendicular the propagation direction of the electron bunch. In Fig. 4(a)
Fig. 4 Normalized horizontal emittance (black line) and vertical emittance (red line) of the electron bunch along the bunch length, (a) before wiggler, (b) after the chicane. The average current is 6 kA and total bunch length is ~12 μm. The laser power is 26 GW, λL = 1200 nm and 7.5 fs FWHM pulse duration.
and 4(b), the normalized emittance is shown before wiggler and after chicane. One can see from Fig. 4(b) that normalized emittance in the central region of electron bunch does not have a significant degradation due to the energy modulation by laser beam.

3.2 Dependence of current profile of electron bunch on the energy distribution

An alternative to control the side peaks in current-profile is to manipulate electron-bunch energy distribution. Different energy distributions of electron bunch can be produced by changing the RF phase in the linear acceleration column and adjusting the chicane parameters of the bunch compressors.

We have carried out a series of simulations for three different distributions of electron bunch energy: (1) approximately 20 μm (≈66 fs) and average beam current 3 kA, (2) 16 μm (≈53 fs) and 4 kA (3) 12 μm (≈40 fs) and 6 kA. The total number of electrons is kept the same in all three distributions. Other electron bunch parameters are the same as given in section 3. Now we fix the laser parameters: 13 GW power, 1200 nm wavelength and 7.5 fs (FWHM) pulse duration. The ESASE parameters used are λw = 55 cm, Kw = 58, B0 = 1.1459 T. The momentum compaction factor R56 is optimized between good quality of electron-beam and the size of chicane. The momentum compaction parameter R56 used is 0.5 mm. The first case has already been presented to explain the ESASE mechanism (see Fig. 2). Here we will present the second and third case.

Figure 5
Fig. 5 The longitudinal energy distribution [(a), (b), (c)] and instantaneous current profile [(d), (e), (f)] along the bunch length before wiggler, after wiggler, and after chicane. The average current is 4 kA and the bunch length is ~16 μm. The laser power is 13 GW, λL = 1200 nm and 7.5 fs FWHM pulse duration.
shows the simulation results for the electron bunch with a length of 16 μm and an average current of 4 kA. Figure 5(a) and 5(d), Fig. 5(b) and 5(e), and Fig. 5(c) and 5(f) show the longitudinal energy distribution and current profile of the bunch before, after wiggler and after chicane, respectively. The energy distribution is well modulated due to the interaction with a laser in the wiggler [Fig. 5(b)]. The oscillations of the laser field are well replicated in energy distribution. The energy modulation in the central cycle of the laser is much stronger than in other cycles. However, we note that there is almost no difference in current profile before & after the wiggler [Fig. 5(c)]. The chicane plays a significant role; the rising slope becomes steeper [Fig. 5(c)] and two current spikes appears [Fig. 5(f)]. After chicane, the current profile has two current-spikes with magnitude 7 kA and 7.39 kA at −0.78 μm and 0.4 μm, respectively.

As shown in Fig. 6(f), there is only one current-spike of 17 kA at 0.013 μm and side peaks almost disappear, compared to Fig. 2(f) and 5(f). This demonstrates that by the manipulation of the energy distribution of electron bunch, one can minimize the side peaks in the interaction of laser and electron bunch so that an isolated current peak is generated. The FWHM duration of this current-spike is one femtosecond, which will become even shorter during the passage through the undulator.

4. Generation of isolated attosecond x-ray pulse

The electron bunch after the chicane is fed into a 100 meter long undulator. The radiation produced by these modulated electron bunches in the undulator is computed by a three-dimensional time- dependent FEL code GENESIS [29

29. S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999), http://pbpl.physics.ucla.edu/~reiche/.

]. The undulator is planar with a period of 2.7 cm, a undulator gap of 4 mm, a undulator parameter of Aw0 = 1.57 and 48 cm long break sections used for the quadrupoles at every 4.3 meter providing electron beam focusing with beta functionβx,βy = 20 meter. The number of undulator periods for a 34 meter long undulator is 34 m / 2.7 cm = 1259, and the total slippage distance is 1259 × 0.1 nm = 125.9 nm = 0.4 fs. The output radiation at 0.1 nm x-ray wavelength has been calculated.

Here space charge effects of the electron beam in GENESIS simulation are neglected. At this energy, effects of space charge force are not important. The effect of the space charge forces at injector section has been taken into account. However, we simulated our results using space charge effects in GENESIS simulation and we find that it does not give any difference.

5. Summary

There is a growing demand for the generation of an isolated attosecond pulse in a hard x-ray region (a few ten keV). In this paper, we clearly demonstrate that such a pulse can be produced in ESASE by either optimizing laser parameters (wavelength and pulse durations) or manipulating the energy distribution of electron bunch or both. Through the optimization for laser wavelengths and pulse durations we find that 1200 nm and 7.5 fs FWHM are optimal laser parameters for producing a single attosecond current spike with a high contrast ratio in a 10 GeV electron beam. An alternative method is the manipulation of electron energy distribution. We have considered three different energy distributions and lengths. We demonstrated that single attosecond current spike can also be produced and such a current spike produces isolated attosecond x-ray pulse in an undualtor. An isolated 146 attosecond, 58 GW peak-power x-ray pulse at 0.1 nm is expected to be produced in a 34 meter long undulator for a driving laser of 1200 nm, 7.5 fs FWHM, and 0.2 mJ and Korean XFEL electron bunch. This isolated attosecond hard x-ray pulse will add a new dimension to attosecond pump-probe experiment in the study of electron dynamics.

Acknowledgments

This research has been supported in part by Global Research Laboratory Program [Grant No 2009-00439] and by Leading Foreign Research Institute Recruitment Program [Grant No 2010-00471] through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST).

References and links

1.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef] [PubMed]

2.

P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, “Direct observation of attosecond light bunching,” Nature 426(6964), 267–271 (2003). [CrossRef] [PubMed]

3.

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]

4.

G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006). [CrossRef] [PubMed]

5.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. E. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” N. J. Phys. 9(7), 243 (2007). [CrossRef]

6.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008). [CrossRef] [PubMed]

7.

H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100(10), 103906 (2008). [CrossRef] [PubMed]

8.

M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446(7136), 627–632 (2007). [CrossRef] [PubMed]

9.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305(5688), 1267–1269 (2004). [CrossRef] [PubMed]

10.

M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002). [CrossRef] [PubMed]

11.

K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. E. Kim, “Relativistic nonlinear Thomson scattering as attosecond x-ray source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 026502 (2003). [CrossRef] [PubMed]

12.

D. E. Kim, H. Lee, S. Chung, and K. Lee, “Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime,” N. J. Phys. 11(6), 063050 (2009). [CrossRef]

13.

S. Y. Chung, M. Yoon, and D. E. Kim, “Generation of attosecond x-ray and gamma-ray via Compton backscattering,” Opt. Express 17(10), 7853–7861 (2009). [CrossRef] [PubMed]

14.

A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92(22), 224801 (2004). [CrossRef] [PubMed]

15.

A. A. Zholents, “Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers,” Phys. Rev. ST Accel. Beams 8(4), 040701 (2005). [CrossRef]

16.

A. A. Zholents and M. S. Zolotorev, “Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction,” N. J. Phys. 10(2), 025005 (2008). [CrossRef]

17.

A. A. Zholents and G. Penn, “Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 8(5), 050704 (2005). [CrossRef]

18.

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “A new technique to generate 100 GW-level attosecond x-ray pulses from the x-ray SASE FELs,” Opt. Commun. 239(1–3), 161–172 (2004). [CrossRef]

19.

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Terawatt-scale sub-10-fs laser technology –key to generation of GW-level attosecond pulses in x-ray free electron laser,” Opt. Commun. 237(1-3), 153–164 (2004). [CrossRef]

20.

R. Bonifacio, L. D. S. Souza, P. Pierini, and E. T. Scharlemann, “Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier,” Nucl. Instrum. Methods Phys. Res. A 296(1-3), 787–790 (1990). [CrossRef]

21.

L. H. Yu, “Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers,” Phys. Rev. A 44(8), 5178–5193 (1991). [CrossRef] [PubMed]

22.

J. Wu and L. H. Yu, “Coherent hard x-ray production by cascading stages of high gain harmonic generation,” Nucl. Instrum. Methods Phys. Res. A 475(1-3), 104–111 (2001). [CrossRef]

23.

E. Allaria and G. De Ninno, “Soft-x-ray coherent radiation using a single-cascade free-electron laser,” Phys. Rev. Lett. 99(1), 014801 (2007). [CrossRef] [PubMed]

24.

G. Stupakov, “Using the beam-echo effect for generation of short-wavelength radiation,” Phys. Rev. Lett. 102(7), 074801 (2009). [CrossRef] [PubMed]

25.

D. Xiang and G. Stupakov, “Echo-enabled harmonic generation free electron laser,” Phys. Rev. ST Accel. Beams 12(3), 030702 (2009). [CrossRef]

26.

Laser acceleration-focused laser http://www.slac.stanford.edu/~achao/LaserAccelerationFocussed.pdf.

27.

H.-S. Kang and S.-H. Nam, in Proceedings of the 32nd International FEL 2010 Conference (Malmo, Sweden, Aug. 23–27, 2010), http://fel2010.maxlab.lu.se/.

28.

M. Borland, “Elegant: A flexible SSD-compliant code for accelerator simulation,” http://www.aps.anl.gov.

29.

S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999), http://pbpl.physics.ucla.edu/~reiche/.

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(320.5550) Ultrafast optics : Pulses
(140.7215) Lasers and laser optics : Undulator radiation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 16, 2011
Revised Manuscript: March 22, 2011
Manuscript Accepted: March 23, 2011
Published: April 4, 2011

Citation
Sandeep Kumar, Heung-Sik Kang, and Dong Eon Kim, "Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme," Opt. Express 19, 7537-7545 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414(6863), 509–513 (2001). [CrossRef] [PubMed]
  2. P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, “Direct observation of attosecond light bunching,” Nature 426(6964), 267–271 (2003). [CrossRef] [PubMed]
  3. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]
  4. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314(5798), 443–446 (2006). [CrossRef] [PubMed]
  5. M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. E. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” N. J. Phys. 9(7), 243 (2007). [CrossRef]
  6. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008). [CrossRef] [PubMed]
  7. H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, “Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100(10), 103906 (2008). [CrossRef] [PubMed]
  8. M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446(7136), 627–632 (2007). [CrossRef] [PubMed]
  9. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305(5688), 1267–1269 (2004). [CrossRef] [PubMed]
  10. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419(6909), 803–807 (2002). [CrossRef] [PubMed]
  11. K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. E. Kim, “Relativistic nonlinear Thomson scattering as attosecond x-ray source,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 026502 (2003). [CrossRef] [PubMed]
  12. D. E. Kim, H. Lee, S. Chung, and K. Lee, “Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime,” N. J. Phys. 11(6), 063050 (2009). [CrossRef]
  13. S. Y. Chung, M. Yoon, and D. E. Kim, “Generation of attosecond x-ray and gamma-ray via Compton backscattering,” Opt. Express 17(10), 7853–7861 (2009). [CrossRef] [PubMed]
  14. A. A. Zholents and W. M. Fawley, “Proposal for intense attosecond radiation from an x-ray free-electron laser,” Phys. Rev. Lett. 92(22), 224801 (2004). [CrossRef] [PubMed]
  15. A. A. Zholents, “Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers,” Phys. Rev. ST Accel. Beams 8(4), 040701 (2005). [CrossRef]
  16. A. A. Zholents and M. S. Zolotorev, “Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction,” N. J. Phys. 10(2), 025005 (2008). [CrossRef]
  17. A. A. Zholents and G. Penn, “Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser,” Phys. Rev. ST Accel. Beams 8(5), 050704 (2005). [CrossRef]
  18. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “A new technique to generate 100 GW-level attosecond x-ray pulses from the x-ray SASE FELs,” Opt. Commun. 239(1–3), 161–172 (2004). [CrossRef]
  19. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, “Terawatt-scale sub-10-fs laser technology –key to generation of GW-level attosecond pulses in x-ray free electron laser,” Opt. Commun. 237(1-3), 153–164 (2004). [CrossRef]
  20. R. Bonifacio, L. D. S. Souza, P. Pierini, and E. T. Scharlemann, “Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier,” Nucl. Instrum. Methods Phys. Res. A 296(1-3), 787–790 (1990). [CrossRef]
  21. L. H. Yu, “Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers,” Phys. Rev. A 44(8), 5178–5193 (1991). [CrossRef] [PubMed]
  22. J. Wu and L. H. Yu, “Coherent hard x-ray production by cascading stages of high gain harmonic generation,” Nucl. Instrum. Methods Phys. Res. A 475(1-3), 104–111 (2001). [CrossRef]
  23. E. Allaria and G. De Ninno, “Soft-x-ray coherent radiation using a single-cascade free-electron laser,” Phys. Rev. Lett. 99(1), 014801 (2007). [CrossRef] [PubMed]
  24. G. Stupakov, “Using the beam-echo effect for generation of short-wavelength radiation,” Phys. Rev. Lett. 102(7), 074801 (2009). [CrossRef] [PubMed]
  25. D. Xiang and G. Stupakov, “Echo-enabled harmonic generation free electron laser,” Phys. Rev. ST Accel. Beams 12(3), 030702 (2009). [CrossRef]
  26. Laser acceleration-focused laser http://www.slac.stanford.edu/~achao/LaserAccelerationFocussed.pdf .
  27. H.-S. Kang and S.-H. Nam, in Proceedings of the 32nd International FEL 2010 Conference (Malmo, Sweden, Aug. 23–27, 2010), http://fel2010.maxlab.lu.se/ .
  28. M. Borland, “Elegant: A flexible SSD-compliant code for accelerator simulation,” http://www.aps.anl.gov .
  29. S. Reiche, “GENESIS 1.3: a fully 3D time-dependent FEL simulation code Nucl. Instrum. Methods Phys. Res. A 429, 243–248 (1999), http://pbpl.physics.ucla.edu/~reiche/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited