OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 8 — Apr. 11, 2011
  • pp: 7546–7552
« Show journal navigation

Multi-gigawatt ultrashort pulses at high repetition rate and average power from two-stage nonlinear compression

S. Hädrich, H. Carstens, J. Rothhardt, J. Limpert, and A. Tünnermann  »View Author Affiliations


Optics Express, Vol. 19, Issue 8, pp. 7546-7552 (2011)
http://dx.doi.org/10.1364/OE.19.007546


View Full Text Article

Acrobat PDF (876 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present simple and compact (1.5m x 0.5m footprint) post-compression of a state-of-the-art fiber chirped pulse amplification system. By using two stage nonlinear compression in noble gas filled hollow core fibers we shorten 1 mJ, 480 fs, 50 kHz pulses. The first stage is a 53 cm long, 200 µm inner diameter fiber filled with xenon with subsequent compression in a chirped mirror compressor. A 20 cm, 200 µm inner diameter fiber filled with argon further broadens the spectrum in a second stage and compression is achieved with another set of chirped mirrors. The average power is 24.5 W / 19 W after the first / second stage, respectively. Compression to 35 fs is achieved. Numerical simulations, agreeing well with experimental data, yield a peak power of 5.7 GW at a pulse energy of 380 µJ making this an interesting source for high harmonic generation at high repetition rate and average power.

© 2011 OSA

1. Introduction

Fiber lasers have earned the reputation to be an average power scalable concept due to their outstanding thermo-optical properties. It has been shown that several kW can be extracted in cw operation [1

1. D. Gapontsev, “IPG Photonics 6 kW CW singlemode ytterbium fiber laser in all-fiber format,” presented at the Solid State Diode Laser Technol. Rev., Albuquerque, NM, 2008.

]. When using fibers for amplification of ultrashort pulses the operation becomes more challenging due to the onset of nonlinear effects. However, by applying chirped pulse amplification and the use of ultra large mode area fibers it became possible to extract 1 mJ, sub-picosecond pulses at repetition rates of 50 kHz [2

2. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-24-3495. [CrossRef] [PubMed]

].

In addition, recently there is been particular interest in high average power ultrashort pulse laser sources that can be used for high harmonic generation (HHG). When focusing to intensities on the order of 1014 W/cm2 odd multiples of the laser frequency can be generated, which are typically in the extreme ultraviolet (EUV) spectral range. This radiation preserves the coherence of the driving laser making this a very attractive source for a variety of applications [3

3. T. Haarlammert and H. Zacharias, “Application of high harmonic radiation in surface science,” Curr. Opin. Solid State Mater. Sci. 13(1-2), 13–27 (2009). [CrossRef]

6

6. E. Goulielmakis, Z. H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010). [CrossRef] [PubMed]

]. Especially, the table-top size setups are an interesting alternative to large scale facilities. However, one of the major drawbacks is the conversion efficiency, which typically is lower than 10−6 in phase matched HHG [7

7. J. Eden, “High-order harmonic generation and other intense optical field-matter interactions: review of recent experimental and theoretical advances,” Prog. Quantum Electron. 28(3-4), 197–246 (2004). [CrossRef]

]. When phase matching cannot be achieved quasi-phase matching schemes have to be used [8

8. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003). [CrossRef] [PubMed]

10

10. J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, and F. Krausz, “Coherent Superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007). [CrossRef]

]. Additionally, schemes relying on enhancement of the electrical field, such as cavity [11

11. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008). [CrossRef] [PubMed]

,12

12. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-10-1099. [CrossRef] [PubMed]

] or other enhancement schemes [13

13. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009). [CrossRef]

,14

14. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]

], have been successfully demonstrated for low energy high repetition rate laser systems. The use of high repetition rate driving laser systems without the need for enhancement has been increasingly important over the last years [15

15. F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68(1), 013814 (2003). [CrossRef]

18

18. S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, “High harmonic generation by novel fiber amplifier based sources,” Opt. Express 18(19), 20242–20250 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20242. [CrossRef] [PubMed]

]. A main requirement for efficient harmonic generation is to have ultrashort pulses (~10 optical cycles [19

19. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010). [CrossRef]

]) to prevent the built up of ionization. This ionization eventually reduces the harmonic yield, since phase matching cannot be achieved above a critical value. In [18

18. S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, “High harmonic generation by novel fiber amplifier based sources,” Opt. Express 18(19), 20242–20250 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20242. [CrossRef] [PubMed]

] we have shown that, as expected, fiber chirped pulse amplification (FCPA) systems have limited conversion efficiency due to their pulse duration of several hundred femtoseconds. To overcome this and fully exploit the advantages of fiber lasers for HHG, we have used pulse compression techniques by nonlinear compression in noble gas filled hollow core fibers [20

20. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913. [CrossRef] [PubMed]

] and few-cycle optical parametric chirped pulse amplification systems [21

21. F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18(5), 4689–4694 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4689. [CrossRef] [PubMed]

,22

22. J. Rothhardt, S. Hädrich, E. Seise, M. Krebs, F. Tavella, A. Willner, S. Düsterer, H. Schlarb, J. Feldhaus, J. Limpert, J. Rossbach, and A. Tünnermann, “High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system,” Opt. Express 18(12), 12719–12726 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12719. [CrossRef] [PubMed]

] to reduce the pulse duration, increase the peak power and increase the conversion efficiency [18

18. S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, “High harmonic generation by novel fiber amplifier based sources,” Opt. Express 18(19), 20242–20250 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20242. [CrossRef] [PubMed]

]. Especially, the nonlinear compression has proven to be a robust and simple architecture for this purpose.

This compression scheme has been widely used for Ti:Sapphire based laser systems to obtain the shortest possible pulses [23

23. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997). [CrossRef]

]. In recent years there has been work on increasing the pulse energy and average power of these systems. To date the highest compressed pulse energy is 5 mJ at 1 kHz corresponding to 5 W of average power [24

24. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression,” Opt. Lett. 35(11), 1887–1889 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-11-1887. [CrossRef] [PubMed]

].

2. Fiber chirped pulse amplification system

The fiber chirped pulse amplification (FCPA) system is a modified version of the system presented in [2

2. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-24-3495. [CrossRef] [PubMed]

]. In contrast to [2

2. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-24-3495. [CrossRef] [PubMed]

] we have added a pulse shaping device (BioPhotonics Solutions Inc.) that uses the multi photon intrapulse interference phase scan for phase measurement and optimization of the pulse compression. This device is integrated before the amplifiers, thus pre-compensating the nonlinear phase that is basically accumulated in the main amplifier fiber, a rod-type photonic crystal fiber. This fiber allows for extraction of 1.3 mJ of pulse energy. Using a compressor with >70% efficiency we obtain 1 mJ of compressed pulse energy at a repetition rate of 50 kHz equalling an average power of 50 W.

Due to the pulse shaping device the pulses can be shortened to less than 500 fs pulse duration. We have been performing temporal pulse measurements with an autocorrelator and a FROG, which agree well with one another (Fig. 1 (a)
Fig. 1 Performance of the fiber chirped pulse amplification system. (a) Measured autocorrelation (blue) together with the autocorrelation retrieved by the FROG measurement (gray). (b) Measured spectrum (blue) together with the corresponding spectrum (gray) and phase (green) retrieved by the FROG measurement. (c) Temporal pulse profile (blue) and phase (green) of the compressed pulses retrieved by the FROG measurement indicating a peak power of 1.8 GW.
). Additionally, the spectrum retrieved by the FROG measurement is in good agreement with the one measured by an optical spectrum analyzer (Fig. 1 (b)). From this measurement the pulse duration and peak power can be estimated to be 480 fs (Fourier limit: 400 fs) and 1.8 GW (Fig. 1 (c)).

This pulse shaping helps to overcome the limitations we have encountered in [20

20. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913. [CrossRef] [PubMed]

], where spectral broadening and recompression was influenced by the nonlinear phase that was already imposed by the FCPA system. With almost transform limited pulses to start the broadening process, we are now able to obtain almost pure self-phase modulation (SPM) phase that can mostly be compensated by chirped mirrors with negative group velocity dispersion. However, it has to be noted that there are remaining higher order phase terms imposed by the SPM process.

3. Nonlinear compression - experimental setup and results

Nonlinear compression in noble-gas filled hollow core fibers relies on self-phase modulation of the input, which leads to spectral broadening. When removing the imposed chirp, the pulses are shortened in time and usually the peak power is enhanced. The nonlinearity here is provided by the noble gas filling and can be adapted to the experimental conditions by the gas (Ne, Ar, Kr, Xe) and its pressure.

The major limitations for this compression arise from ionization and self-focusing effects that limit the intensity and peak power of the input pulses, respectively [26

26. C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-2-253. [CrossRef] [PubMed]

]. They depend on the gas type and pressure, which both have to be adjusted to the input parameters of our laser system. In [20

20. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913. [CrossRef] [PubMed]

] we have discussed that xenon is the only noble gas that provides the required nonlinearity for the output pulses of the FCPA system. On the other hand, ionization is facilitated due to the low ionization potential of xenon (12.1 eV) and self-focusing due to the high nonlinearity (n2=8.1·10−23 m2/(W·bar)). For a peak power of 1.8 GW the critical pressure (the pressure where self-focusing sets in) is about 1.1 bar [27

27. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-5-335. [CrossRef]

].

Indeed, we observe a decreasing energy transmission that sets in at around 1 bar of xenon pressure (Fig. 2
Fig. 2 Output energy after propagating the 1mJ, 480 fs pulses through a 53 cm, 200 µm inner diameter fiber filled with xenon at various pressure.
). This indicates that self-focusing can reduce the efficiency of the system. In addition, multiphoton ionization is expected to create free electrons due to the high intensity of 2·1013 W/cm2 at the fiber entrance. This can cause plasma defocusing effects that eventually reduce the coupling efficiency. Both effects could be suppressed to some extend by implementing a differential pumping scheme [28

28. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10 fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86(11), 111116 (2005). [CrossRef]

].

The setup used for nonlinear compression is shown in Fig. 3
Fig. 3 Experimental setup used for double-stage nonlinear compression. The pulses of a fiber chirped pulse amplification (FCPA) system are coupled to a first hollow core fiber that sits on a V-groove in a chamber filled with xenon. Subsequent compression is achieved by a chirped mirror compressor. Next, the compressed pulses are coupled to a second hollow core fiber filled with argon followed by another chirped mirror compressor. The output is analyzed with an autocorrelator (AC) and an optical spectrum analyzer (OSA).
. The output of the FCPA system is coupled to a 53 cm long 200 µm inner diameter hollow core fiber. For efficient coupling to the EH11 mode the focal spot size is set to ~128 µm by using a f=500 mm focal length lens. The overall transmission of this fiber has been measured to be higher than 60%. The fiber with an outer diameter is kept straight by a V-groove which is placed inside a chamber containing two anti reflection coated windows. After being evacuated the chamber is filled with xenon gas serving as nonlinear medium for the occurrence of self-phase modulation. Compression is achieved by the use of chirped mirrors with a group velocity dispersion (GVD) of −250fs2/bounce. Due to the high reflectance of the chirped mirrors, the compressor efficiency is usually higher than 95% overall.

When coupling the output pulses of the FCPA to the fiber at a xenon pressure of 0.85 bar the spectrum broadens to a −10dB bandwidth of 55 nm (Fig. 4 (a)
Fig. 4 (a) Measured (blue) and simulated spectrum (gray) after the first stage. (b) Measured (blue) and simulated (gray) autocorrelation of the compressed pulses after the first stage. (c) Collimated beam after the compressor of the first stage.
). The average power that has been measured after the compressor was as high as 24.5 W, which is equivalent to a pulse energy of 490 µJ at 50 kHz. To the best of our knowledge, this is the highest average power that has been extracted so far from a single stage nonlinear compression. By applying an overall GVD of −4500 fs2, the pulses are compressed to an autocorrelation width of 112 fs (Fig. 4 (b)).

Figure 4 also contains simulations of the nonlinear compression that has been performed by using the temporal pulse profile of the input pulse (Fig. 1 (c)) and a split step fourier method. For the simulation we have assumed 90% coupling efficiency that can be obtained due to the well defined beam profile of the fiber amplifier. For a 200 µm fiber the theoretical loss calculates to 0.46 m−1 [29

29. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

], while experimentally we observe a loss of 0.8 m−1. For the simulation process we use the latter value and a mode field diameter of 143 µm. The n2 values of the xenon gas have been adapted to n2=6.1·10−23 W/cm2 such that the measured experimental spectrum and the simulation match. Since the n2 values are not exactly known this assumption is justified. The experimental data and the simulation agree very well (Fig. 4 (a) and (b)), both for the autocorrelation and the spectrum. This allows us to extract the compressed pulse duration of 68 fs, with 60% of the pulse energy in a Gaussian like 68 fs main pulse. The peak power for the compressed pulse is 4.2 GW. Together with the excellent beam quality (Fig. 4 (c)) this first stage is already an interesting source for various applications.

However, a second stage can be used for further pulse shortening and peak power enhancement. Therefore, the output of the first stage is imaged to the second fiber with an f=200 mm lens. The second stage contains a V-groove mounted 20 cm long, 200 µm inner diameter fiber sitting in a chamber followed by a compressor utilizing chirped mirrors with a GVD of −100 fs2/bounce. The transmission of the second stage including compression is as high as 80%. Due to the peak power enhancement and pulse shortening obtained in the first stage a lower nonlinearity is required resulting in a short fiber and argon (n2=9.8·10−24 m2/W·bar) as nonlinear medium.

The argon pressure in the second stage is set to 2.0 bar allowing for further spectral broadening of the pulses emerging from the first stage. The broadened spectrum has a −10 dB bandwidth of 67 nm (Fig. 5 (a)
Fig. 5 (a) Measured (blue) and simulated spectrum (gray) after the second stage. (b) Measured (blue) and simulated (gray) autocorrelation of the compressed pulses after the second stage. (c) Collimated beam after the compressor of the second stage.
). A GVD of −800 fs2 is used to compress the pulses to an autocorrelation width of 51 fs (Fig. 5 (b)). We have performed a numerical simulation for the second stage as well. We were using the output of our first simulation as input for the second stage. Again the numerical and experimental results agree very well (Fig. 5 (a) and (b)). Thus, we are able to extract pulses with a duration of 35 fs, where 54% of the energy are contained in a 35 fs Gaussian main pulse. The peak power of second stage amounts to 5.7 GW, while a good beam quality is maintained (Fig. 5 (c)). These are the shortest pulses with the highest peak power that have been obtained with high average power fiber lasers to date. The temporal pulse quality of the pulses can be improved by well known pulse cleaning techniques such as nonlinear elliptical polarization rotation (NER) [20

20. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913. [CrossRef] [PubMed]

,30

30. D. Homoelle, A. L. Gaeta, V. Yanovsky, and G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–1648 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-18-1646. [CrossRef]

] or cross-polarized wave (XPW) generation [31

31. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-8-920. [CrossRef] [PubMed]

]. The energy outside the main pulse does not affect high harmonic generation, since the peak power of the wings is low. Calculations based on the ADK model [32

32. M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an altering electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

] have shown that the accumulated ionization of our compressed pulse is only slighter higher than that of a transform limited Gaussian pulse with the same peak power meaning that phase matching will not be affected by the wings of the pulse. The pulse energy of the compressed pulses after the second stage was 380 µJ, which is an average power of 19 W at a repetition rate of 50 kHz. Note that the overall efficiency of the two stages including coupling, propagation and compressor loss is as high as 38%. The obtained pulse parameters (peak power, pulse duration and average power) are significantly enhanced in comparison to [20

20. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913. [CrossRef] [PubMed]

]. This high average and peak power ultrashort pulse laser system is expected to benefit e.g. EUV source development (HHG).

4. Conclusion

A post-compression scheme for a state-of-the-art fiber chirped pulse amplification system is realized by exploiting nonlinear interaction in noble gas filled hollow-core fibers. By using a double-stage setup we compress 1 mJ, 480 fs, 50 kHz (50 W), 1.8 GW pulses to 380 µJ, 35 fs, 50 kHz (19 W), 5.7 GW pulses. This is possible by implementing a pulse shaping device into the fiber system [2

2. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-24-3495. [CrossRef] [PubMed]

], thus allowing to start with nearly transform limited pulses at mJ level pulse energies. A high nonlinearity gas (xenon) is used in a first stage to achieve significant spectral broadening. After the first compression stage another nonlinear interaction in argon further broadens the spectrum before the pulses are compressed again. This setup allows shortening of the pulses by more than one order of magnitude while enhancing the peak power by a factor of 3. Due to the high efficiency the final pulse energy is as high as 380 µJ. The source offers the required parameter for efficient high harmonic generation at high repetition rates, which will be implemented in the future.

We also believe that there is further potential for using this compression scheme. Currently, the chirped mirrors used for compression do not perfectly fit our central wavelength limiting especially the broadening of the second stage. By using broader bandwidth mirrors, further pulse shortening to about 10 fs can be expected, which will results in more than 10 GW peak power few-cycle pulses. The use of differential pumping [27

27. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-5-335. [CrossRef]

] can help to minimize ionization and self-focusing issues allowing for more stable operation.

Acknowledgements

This work has been partly supported by the German Federal Ministry of Education and Research (BMBF), Grant 05 ES7GU1, the Helmholtz Institute Jena and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no [240460]. We thank Dr. Pastirk of BioPhotonicsSolutions Inc. for fruitful discussions concerning the MIIPS algorithm. S.H. acknowledges financial support by the Carl Zeiss Stiftung Germany.

References and Links

1.

D. Gapontsev, “IPG Photonics 6 kW CW singlemode ytterbium fiber laser in all-fiber format,” presented at the Solid State Diode Laser Technol. Rev., Albuquerque, NM, 2008.

2.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-24-3495. [CrossRef] [PubMed]

3.

T. Haarlammert and H. Zacharias, “Application of high harmonic radiation in surface science,” Curr. Opin. Solid State Mater. Sci. 13(1-2), 13–27 (2009). [CrossRef]

4.

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, “Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams,” Phys. Rev. Lett. 99(9), 098103 (2007). [CrossRef] [PubMed]

5.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007). [CrossRef] [PubMed]

6.

E. Goulielmakis, Z. H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010). [CrossRef] [PubMed]

7.

J. Eden, “High-order harmonic generation and other intense optical field-matter interactions: review of recent experimental and theoretical advances,” Prog. Quantum Electron. 28(3-4), 197–246 (2004). [CrossRef]

8.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003). [CrossRef] [PubMed]

9.

X. Zang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, “Quasi-Phase-Matching and Quantum Path Control of High-Harmonic Generation using Counterpropagating Light,” Nat. Phys. 3(4), 270–275 (2007). [CrossRef]

10.

J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, and F. Krausz, “Coherent Superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007). [CrossRef]

11.

A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008). [CrossRef] [PubMed]

12.

D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-10-1099. [CrossRef] [PubMed]

13.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009). [CrossRef]

14.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]

15.

F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68(1), 013814 (2003). [CrossRef]

16.

M.-C. Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane, “Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz,” Opt. Express 17(20), 17376–17383 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17376. [CrossRef] [PubMed]

17.

J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével, E. Constant, and E. Cormier, “High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system,” Opt. Lett. 34(9), 1489–1491 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-9-1489. [CrossRef] [PubMed]

18.

S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, “High harmonic generation by novel fiber amplifier based sources,” Opt. Express 18(19), 20242–20250 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20242. [CrossRef] [PubMed]

19.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010). [CrossRef]

20.

S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913. [CrossRef] [PubMed]

21.

F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18(5), 4689–4694 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4689. [CrossRef] [PubMed]

22.

J. Rothhardt, S. Hädrich, E. Seise, M. Krebs, F. Tavella, A. Willner, S. Düsterer, H. Schlarb, J. Feldhaus, J. Limpert, J. Rossbach, and A. Tünnermann, “High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system,” Opt. Express 18(12), 12719–12726 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12719. [CrossRef] [PubMed]

23.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997). [CrossRef]

24.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression,” Opt. Lett. 35(11), 1887–1889 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-11-1887. [CrossRef] [PubMed]

25.

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004). [CrossRef] [PubMed]

26.

C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-2-253. [CrossRef] [PubMed]

27.

G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-5-335. [CrossRef]

28.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10 fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86(11), 111116 (2005). [CrossRef]

29.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

30.

D. Homoelle, A. L. Gaeta, V. Yanovsky, and G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–1648 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-18-1646. [CrossRef]

31.

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-8-920. [CrossRef] [PubMed]

32.

M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an altering electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 29, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 18, 2011
Published: April 5, 2011

Citation
S. Hädrich, H. Carstens, J. Rothhardt, J. Limpert, and A. Tünnermann, "Multi-gigawatt ultrashort pulses at high repetition rate and average power from two-stage nonlinear compression," Opt. Express 19, 7546-7552 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-8-7546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gapontsev, “IPG Photonics 6 kW CW singlemode ytterbium fiber laser in all-fiber format,” presented at the Solid State Diode Laser Technol. Rev., Albuquerque, NM, 2008.
  2. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-24-3495 . [CrossRef] [PubMed]
  3. T. Haarlammert and H. Zacharias, “Application of high harmonic radiation in surface science,” Curr. Opin. Solid State Mater. Sci. 13(1-2), 13–27 (2009). [CrossRef]
  4. R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, “Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams,” Phys. Rev. Lett. 99(9), 098103 (2007). [CrossRef] [PubMed]
  5. E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007). [CrossRef] [PubMed]
  6. E. Goulielmakis, Z. H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature 466(7307), 739–743 (2010). [CrossRef] [PubMed]
  7. J. Eden, “High-order harmonic generation and other intense optical field-matter interactions: review of recent experimental and theoretical advances,” Prog. Quantum Electron. 28(3-4), 197–246 (2004). [CrossRef]
  8. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003). [CrossRef] [PubMed]
  9. X. Zang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, “Quasi-Phase-Matching and Quantum Path Control of High-Harmonic Generation using Counterpropagating Light,” Nat. Phys. 3(4), 270–275 (2007). [CrossRef]
  10. J. Seres, V. S. Yakovlev, E. Seres, Ch. Streli, P. Wobrauschek, Ch. Spielmann, and F. Krausz, “Coherent Superposition of laser-driven soft-X-ray harmonics from successive sources,” Nat. Phys. 3(12), 878–883 (2007). [CrossRef]
  11. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008). [CrossRef] [PubMed]
  12. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-10-1099 . [CrossRef] [PubMed]
  13. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009). [CrossRef]
  14. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  15. F. Lindner, W. Stremme, M. G. Schätzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Strüder, “High-order harmonic generation at a repetition rate of 100 kHz,” Phys. Rev. A 68(1), 013814 (2003). [CrossRef]
  16. M.-C. Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane, “Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz,” Opt. Express 17(20), 17376–17383 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17376 . [CrossRef] [PubMed]
  17. J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével, E. Constant, and E. Cormier, “High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system,” Opt. Lett. 34(9), 1489–1491 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-9-1489 . [CrossRef] [PubMed]
  18. S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, “High harmonic generation by novel fiber amplifier based sources,” Opt. Express 18(19), 20242–20250 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20242 . [CrossRef] [PubMed]
  19. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010). [CrossRef]
  20. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, “High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system,” Opt. Express 17(5), 3913–3922 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3913 . [CrossRef] [PubMed]
  21. F. Tavella, A. Willner, J. Rothhardt, S. Hädrich, E. Seise, S. Düsterer, T. Tschentscher, H. Schlarb, J. Feldhaus, J. Limpert, A. Tünnermann, and J. Rossbach, “Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA,” Opt. Express 18(5), 4689–4694 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4689 . [CrossRef] [PubMed]
  22. J. Rothhardt, S. Hädrich, E. Seise, M. Krebs, F. Tavella, A. Willner, S. Düsterer, H. Schlarb, J. Feldhaus, J. Limpert, J. Rossbach, and A. Tünnermann, “High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system,” Opt. Express 18(12), 12719–12726 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12719 . [CrossRef] [PubMed]
  23. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997). [CrossRef]
  24. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression,” Opt. Lett. 35(11), 1887–1889 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-11-1887 . [CrossRef] [PubMed]
  25. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004). [CrossRef] [PubMed]
  26. C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-2-253 . [CrossRef] [PubMed]
  27. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-5-335 . [CrossRef]
  28. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10 fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86(11), 111116 (2005). [CrossRef]
  29. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  30. D. Homoelle, A. L. Gaeta, V. Yanovsky, and G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27(18), 1646–1648 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-18-1646 . [CrossRef]
  31. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-8-920 . [CrossRef] [PubMed]
  32. M. V. Ammosov, N. B. Delone, and V. P. Kraĭnov, “Tunnel ionization of complex atoms and of atomic ions in an altering electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited