OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 9 — Apr. 25, 2011
  • pp: 8079–8084
« Show journal navigation

Optimizing the subcarrier granularity of coherent optical communications systems

Liang B. Du and Arthur J. Lowery  »View Author Affiliations


Optics Express, Vol. 19, Issue 9, pp. 8079-8084 (2011)
http://dx.doi.org/10.1364/OE.19.008079


View Full Text Article

Acrobat PDF (1099 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we use numerical simulations to show that the symbol rate has a significant effect on the nonlinearity-limited performance of coherent optical communication systems. We consider the case where orthogonal subcarriers are used to maximize the spectral efficiency. Symbol rates from 0.78125 Gbaud to 100 Gbaud and links of up to 3200 km, without inline dispersion compensation, were simulated. The results show that the optimal symbol rates for the 800-km link and 3200-km link were 6.25-Gbaud and 3.125-Gbaud respectively. The optimal baud rate decreases as the length of the link is increased. After 3200 km, the performance of the 100-Gbaud system was worst in the nonlinearity-limited regime producing a received Q 2.4-dB lower than the 3.125-Gband system. The variation in the nonlinearity-limited performance is explained by using Cross-Phase-Modulation (XPM) theory and by considering the RF spectra of the intensity fluctuations of the signal along the link. The findings of the paper suggest that the maximum capacity of nonlinear dispersive optical links can only be achieved by using multiple subcarriers carrying a few Gbaud each, and not by high symbol rate systems.

© 2011 OSA

1. Introduction

In 1996, Forghieri showed that the performance of on-off keying (OOK) systems, carrying data at any given rate, would be affected by the channel granularity in a nonlinear channel [5

5. F. Forghieri, “Granularity in WDM networks: the role of fiber nonlinearities,” IEEE Photon. Technol. Lett. 8(10), 1400–1402 (1996). [CrossRef]

]. If this is also true for coherently detected systems, then transmitting information on a single high baud-rate carrier on each wavelength [6

6. C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008). [CrossRef]

] may be sub-optimal. An alternative is to transmit information on multiple orthogonal subcarriers, where the symbol rate is equal to the subcarrier spacing, which will give the same spectral efficiency for any given constellation. Coherent optical OFDM (CO-OFDM) systems use digital equalization to avoid linear crosstalk between orthogonally spaced subcarriers [7

7. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006). [CrossRef]

]. Electrically generated CO-OFDM typically uses long symbols with hundreds of closely-spaced subcarriers [1

1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” Lightwave Technology Journalism 29, 483–490 (2011). [CrossRef]

, 7

7. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006). [CrossRef]

]. In contrast, no-guard-interval (No-GI) CO-OFDM typically uses fewer optically generated subcarriers with a higher symbol rate [8

8. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]

]. Linear crosstalk can also be avoided optically by phase matching the optical carriers as in coherent WDM [9

9. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]

] or by tight optical filtering as in Nyquist WDM [10

10. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). [CrossRef]

]. Demonstrations have shown that a large number of orthogonal subcarriers can be used to form a continuous spectrum capable of terabit/s transmission and beyond [11

11. B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010). [CrossRef]

]. These technologies allow the granularity of the subcarriers to be decoupled from the spectral efficiency and the total data throughput.

2. Simulation setup

Figure 1
Fig. 1 Simulation setup: inserts show typical optical spectra at various points.
shows the simulation setup. Each subcarrier was modulated with QPSK using separate Complex Mach-Zehnder Modulators (C-MZM) which generates an optical spectrum similar to that shown in Fig. 1a. Each optical subcarrier was passed through a rectangular optical filter with a passband equal to the symbol rate (a Nyquist filter); this reduced the bandwidth of the signal as shown in Fig. 1b. This extreme truncation in the frequency-domain causes each time-domain signal to be sinc-like in shape (near Nyquist pulse). Symbol rates from 0.78125-Gbaud to 100-Gbaud were simulated, where subcarrier spacing is equal to the symbol rate. An ideal optical multiplexer combined the orthogonally-spaced subcarriers to form a continuous 400-GHz wide optical super-channel carrying 800 Gb/s on a single polarization. Figure 1c shows the spectrum of the super-channel for a 50-Gbaud system. The ideal multiplexer and Nyquist filters prevented any linear crosstalk. This is similar to an ideal Nyquist WDM system [10

10. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). [CrossRef]

] except that our optical filter does not suppress the center of each subcarrier in order to make the optical spectrum flat. Signals were limited to a single polarization.

A separate coherent receiver was used for each subcarrier [11

11. B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010). [CrossRef]

]. Another Nyquist filter was used to remove neighboring subcarriers. Figure 1d shows an example optical spectrum after the receiver filter. The local oscillator frequency was identical to that of the transmit laser. Ideal zero-linewidth lasers were simulated. Analog-to-digital converters (ADC) sampling at two samples/symbol were used for all systems. In the digital signal processor, the bulk of the CD was compensated with a frequency domain equalizer [8

8. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]

]. Then a 12-tap fractionally-spaced time-domain equalizer (FS-TDE) was used to compensate for residual CD and to perform the required downsampling [6

6. C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008). [CrossRef]

]. The least-mean-squares algorithm (LMS) was used to estimate the channel response.

A total of 218, or 262144, symbols were simulated. This equates to 65536 symbols per subcarrier for the 100-Gbaud system and 512 symbols per subcarrier for the 0.78125-Gbaud system. The Q was calculated from the spread in the received constellation assuming a Gaussian distribution in each Cartesian coordinate; the Q values for subcarriers within the central 200 GHz were averaged.

3. Simulation results

Figure 2
Fig. 2 Received Q against launch power after 1600 km and 3200 km for four different symbol rates.
shows the received Q against the launch power for 1600-km and 3200-km systems at four different symbol rates. At low powers, the systems are limited by amplified spontaneous emission (ASE). In this region, the Q is almost identical for all systems. The 1.5625-Gbuad system was slightly poorer because of the long impulse response of the filters causing degradation on a large number of symbols. This effect was even greater for the 0.78125-Gbaud system, shown in Fig. 3
Fig. 3 Received Q against subcarrier symbol rate at 2-dBm launch power.
. At high powers, the systems are limited by fiber nonlinearity. The spread of the Q is over 2 dB for launch powers of 2 dBm and above. This spread shows that the nonlinearity-limited performance is dependent on the symbol rate of the subcarriers.

Figure 3 plots the received Q against subcarrier carrier symbol rate after 800 km, 1600 km and 3200 km at a launch power of 2 dBm, which is in the nonlinearity-limited regime of Fig. 2. At 800 km, the optimal symbol rate is 6.25 Gbaud; at 1600 km, the optimal symbol rate reduces to between 3.125 and 6.25 Gbaud; at 3200 km, the optimal symbol rate is 3.125 Gbaud. These results show the optimal symbol rate decreases as the transmission distance is increased. These optimal symbol rates are consistent with an independent study conducted in [13

13. W. Shieh and T. Yan, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon. J. 2(3), 276–283 (2010). [CrossRef]

], where the optimal subcarrier spacing of a 1000-km eight-wavelength 107-Gb/s DFT spread OFDM system was found to be around 3.6 GHz. These results show the variation in Q across with symbol rate is significant for all transmission distances: choosing the correct baud rate will improve system performance.

4. Discussion

XPM theory states the efficiency of the nonlinearity-induced phase modulation is reduced for high-frequency intensity fluctuations. The efficiency of XPM for regular fiber spans without inline dispersion compensation is given by [12

12. T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996). [CrossRef]

]:
ηXPM=α2α2+(ω.D.Δλ)2[1+4sin2(ω.D.Δλ.L2).eαL(1eαL)2]sin(N.ω.D.Δλ.L2)sin(ω.D.Δλ.L2)
(1)
where: α is attenuation in Nepers/m, L is the fiber’s length in m, D is the CD constant in s/m2, Δλ is the wavelength separation between the ‘probe’ and ‘pump’ frequencies in m [12

12. T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996). [CrossRef]

], ω is the frequency of the intensity fluctuation in rad/s and N is the number of spans in the link.

To explore this idea, the frequency content of the intensity fluctuations for different baud rates were investigated by simulation, at different points along the link. Figure 4
Fig. 4 Spectra of the intensity waveform; the resolution bandwidth was set to 50 MHz. Note the different frequency scales, chosen to highlight the low-frequency fluctuations.
shows the RF power into a 1-A/W photodiode into a 1-ohm load. Figure 4a shows the intensity fluctuations of all four systems at the transmitter. These were lowest at DC and increased with frequency at different rates (with respect to frequency). The lowest baud-rate transmitters had the most RF power at low frequencies. This is expected because QPSK is a constant-modulus modulation format so should suppress intensity fluctuations at frequencies below the symbol rate.

After 80 km of fiber, the intensity spectra have different forms as shown in Fig. 4b. CD has caused the low-frequency intensity fluctuations of the 100-Gbaud system to be as strong as in the 1.5625-Gbaud system, even at frequencies below the baud rate. The intensity fluctuations of the 25-Gbaud system have also increased to similar levels as the 6.25-Gbaud system. CD causes the symbols to broaden, which means the low-frequencies of one symbol will overlap with the high-frequencies of a following symbol; overlapped symbols beat together to produce strong intensity fluctuations. For any amount of CD, the number of overlapped symbols increases quadratically with the symbol rate. For example, 400 km of S-SMF will cause 512 adjacent symbols to overlap in a 100-Gbaud system whereas only two adjacent symbols will overlap in a 6.25-Gbaud system. Therefore, the intensity fluctuations will increase most rapidly in systems with high symbol rates. This means that although the 100-Gbaud system will generate the smallest nonlinearity products in the first span, it will generate the largest nonlinearity products of the four systems shown in Fig. 4 in all subsequent spans. This explains why its performance at high powers was the poorest for all lengths, as shown in Fig. 2.

Figure 4c shows that for a transmission distance of 400 km, the intensity fluctuations of the 25-Gbaud system are stronger than the 1.5625-Gbaud system. Also, the 6.25-Gbaud system now has the weakest low-frequency intensity fluctuations. This also explains why the 6.25-Gbaud system has the best performance in 800-km and 1600-km links. After 1600 km, the intensity fluctuations of the 6.25-Gbaud system have increased to a similar level to those of the 1.5625-Gbaud system as shown in Fig. 4d. Therefore, the 6.25-Gbaud and 1.5625-Gbaud systems have a similar performance for 3200 km as shown in Fig. 2 and Fig. 3.

A split-step nonlinearity compensator could be used to compensate for all signal-signal induced fiber nonlinearity if the entire optical signal is encapsulated in a single digital signal [2

2. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008). [CrossRef] [PubMed]

]. In this case, ASE-signal Four-Wave-Mixing (FWM) will determine the nonlinear limit [16

16. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011). [CrossRef] [PubMed]

]. Also, we would expect the nonlinear limit to be independent of the granularity. However, if the split-step method operates on sub-bands of the optical signal with a certain bandwidth [17

17. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008). [CrossRef]

], then only the fiber nonlinearities within each sub-band can be compensated. From the results of Fig. 4, we expect that an optimized granularity will produce less nonlinear mixing between each sub-band. Therefore, we expect granularity to have an effect on systems using nonlinearity compensation on sub-bands.

5. Conclusion

In this paper, we have shown that the subcarrier symbol rate has a significant effect on the nonlinearity limited performance of coherent optical systems. The results suggest that the optimal symbol rate decreases for longer links. This result can be explained by considering the spectra of the intensity-fluctuations together with the XPM efficiency. An important conclusion is that the symbol rate should be considered when investigating the ultimate capacity of a long-haul optical link: simply transmitting at the maximum symbol rate allowed by the electronics will not be optimum. That is, it may be possible to increase the capacity of a 100-Gbaud system [3

3. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008). [CrossRef] [PubMed]

] by decreasing the symbol rate and so increasing its granularity.

Acknowledgements

This work is supported under the Australian Research Council’s Discovery funding scheme (DP1096782).

References and links

1.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” Lightwave Technology Journalism 29, 483–490 (2011). [CrossRef]

2.

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008). [CrossRef] [PubMed]

3.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008). [CrossRef] [PubMed]

4.

A. D. Ellis, Z. Jian, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]

5.

F. Forghieri, “Granularity in WDM networks: the role of fiber nonlinearities,” IEEE Photon. Technol. Lett. 8(10), 1400–1402 (1996). [CrossRef]

6.

C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008). [CrossRef]

7.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006). [CrossRef]

8.

A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]

9.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]

10.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). [CrossRef]

11.

B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010). [CrossRef]

12.

T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996). [CrossRef]

13.

W. Shieh and T. Yan, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon. J. 2(3), 276–283 (2010). [CrossRef]

14.

B. Goebel, S. Hellerbrand, and N. Hanik, “Link-aware precoding for nonlinear optical OFDM transmission,” in Optical Fiber Communication Conference (OSA, 2010), OTuE4.

15.

L. B. Du and A. J. Lowery, “Improved nonlinearity precompensation for long-haul high-data-rate transmission using coherent optical OFDM,” Opt. Express 16(24), 19920–19925 (2008). [CrossRef] [PubMed]

16.

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011). [CrossRef] [PubMed]

17.

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008). [CrossRef]

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 8, 2011
Revised Manuscript: March 31, 2011
Manuscript Accepted: April 3, 2011
Published: April 12, 2011

Citation
Liang B. Du and Arthur J. Lowery, "Optimizing the subcarrier granularity of coherent optical communications systems," Opt. Express 19, 8079-8084 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-9-8079


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” Lightwave Technology Journalism 29, 483–490 (2011). [CrossRef]
  2. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008). [CrossRef] [PubMed]
  3. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008). [CrossRef] [PubMed]
  4. A. D. Ellis, Z. Jian, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010). [CrossRef]
  5. F. Forghieri, “Granularity in WDM networks: the role of fiber nonlinearities,” IEEE Photon. Technol. Lett. 8(10), 1400–1402 (1996). [CrossRef]
  6. C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008). [CrossRef]
  7. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006). [CrossRef]
  8. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]
  9. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  10. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010). [CrossRef]
  11. B. Zhu, X. Liu, S. Chandrasekhar, D. W. Peckham, and R. Lingle, “Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber,” IEEE Photon. Technol. Lett. 22(11), 826–828 (2010). [CrossRef]
  12. T. K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996). [CrossRef]
  13. W. Shieh and T. Yan, “Ultrahigh-Speed Signal Transmission Over Nonlinear and Dispersive Fiber Optic Channel: The Multicarrier Advantage,” IEEE Photon. J. 2(3), 276–283 (2010). [CrossRef]
  14. B. Goebel, S. Hellerbrand, and N. Hanik, “Link-aware precoding for nonlinear optical OFDM transmission,” in Optical Fiber Communication Conference (OSA, 2010), OTuE4.
  15. L. B. Du and A. J. Lowery, “Improved nonlinearity precompensation for long-haul high-data-rate transmission using coherent optical OFDM,” Opt. Express 16(24), 19920–19925 (2008). [CrossRef] [PubMed]
  16. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011). [CrossRef] [PubMed]
  17. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited