OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 2, Iss. 4 — Feb. 16, 1998
  • pp: 125–130
« Show journal navigation

Hot electrons and curves of constant gain in long wavelength quantum well lasers

Vera Gorfinkel, Mikhail Kisin, and Serge Luryi  »View Author Affiliations


Optics Express, Vol. 2, Issue 4, pp. 125-130 (1998)
http://dx.doi.org/10.1364/OE.2.000125


View Full Text Article

Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In long wavelength quantum well lasers the effective electron temperature (Te ) is often a strong function of the pump current and hence the Te correlates with the carrier concentration n in the active region. On the other hand, the material gain g in the active layer depends on both variables, g=g(n,Te). We discuss a convenient way of analyzing this situation, based on considering the contours of constant gain g on the surface g(n,Te). This is qualitatively illustrated with two model examples involving quantum well lasers, the long-wavelength quantum well laser with current dominated by the Auger recombination and the unipolar quantum cascade laser.

© Optical Society of America

1. Introduction

Hot electron effects [1

1. S. Luryi, “Hot electrons in semiconductor devices”, in Hot Electrons in Semiconductors, N. Balkan, ed. (Oxford University Press,1998) pp. 385–427; http://www.ee.sunysb.edu/~serge/152.dir/152.html

] enter the description of the semiconductor laser operation owing to the dependence of the optical gain g on the carrier temperature Te. In near infrared lasers, hot electron effects are relatively small and arise mainly from heterostructure barrier injection and free-carrier absorption of cavity radiation. Nevertheless, even these small effects are not entirely benign: they are responsible for a substantial intermodulation distortion limiting the number of channels in optical communication systems [2

2. V. B. Gorfinkel and S. Luryi, “Fundamental limits for linearity of CATV lasers”, J. Lightwave Technol. 13, 252–260 (1995); http://www.ee.sunysb.edu/–~serge/133.html [CrossRef]

].

Hot electron effects are more dramatic in longer wavelength materials. This happens because of the substantial release of power that accompanies non-radiative recombination. An important component of the non-radiative current in all long-wave materials is owing to Auger recombination. Recently, Silver et al. estimated [3

3. M. Silver, E. P. O’Reilly, and A. R. Adams, “Determination of the wavelength dependence of Auger recombination in long-wavelength quantum-well semiconductor lasers using hydrostatic pressure”, IEEE J. Quantum Electron. 33, 1557–1566 (1997). [CrossRef]

] that Auger processes give a dominant current contribution already at communication wavelengths, 1.75–1.3 μm. Correct account of the Auger contribution become progressively more critical at longer wavelengths, especially in the mid-infrared region [4–6

4. Z. Shi, M. Tacke, A. Lambrecht, and H. Böttner, “Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation”, Appl. Phys. Lett. 66, 2537–2539 (1995). [CrossRef]

].

In every Auger recombination event, the potential energy of an electron and hole pair (which exceeds the semiconductor energy gap) is transferred to a free electron or hole. At high injection current I, this may lead to a substantial carrier heating. The increased carrier temperature Te suppresses the optical gain g and may even lead to the appearance of a maximum g max in the dependence g (I). If the total losses in the laser cavity exceed g max then the structure will not lase at any current. Note that for a constant Te, the “isotherm” dependence g (I) is always monotonic. If the losses do not exceed g max, then the generation regime can be reached, but the negative slope of the g (I) characteristic may result in peculiar instabilities for currents exceeding Icr=I (gmax). For the same value of gain one would have two regimes that differ in the carrier concentration and the temperature and, of course, in the output radiation power. The higher Te regime would correspond to higher concentration and lower power. Such a regime should be metastable. It could be switched into the stable lower- Te regime by a sufficiently powerful external illumination pulse that would temporarily suppress Auger recombination processes.

Analogous phenomena can be expected in the operation of unipolar cascade lasers (QCL) at high enough temperatures [7

7. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature”, Appl. Phys. Lett. 68, 3680–3682 (1996). [CrossRef]

]. Instead of Auger processes, carrier heating in the QCL results from non-radiative intersubband transitions. Again, a kinetic energy on the order of the lasing photon energy is transferred to the electronic system in every transition. The dependence of gain on Te arises owing to the de-phasing of inter-subband transition by scattering processes whose rate depends on the electron energy and also from the non-parabolicity of the conduction band. The resultant non-monotonic g (I) is responsible [8

8. Vera Gorfinkel, Serge Luryi, and Boris Gelmont, “Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations”, IEEE J. Quantum Electron. 32, 1995–2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]

] for the strong temperature dependence of the QCL threshold with an abrupt disappearance of lasing above a critical temperature.

g(n,Te)=α.
(1)

Equation (1) defines a family of curves Te (n). These curves, referred to below as “isogains”, provide a “phase portrait” of the laser. For a given value of the total loss α, the intersection of a corresponding isogain with the Te (n) curve that results from the energy balance equation, defines the operating point of the laser. If for a particular α there is no intersection, such a device will not generate at any pumping.

2. Examples

2.1 Quantum-well laser with Auger heating

The laser operation is modeled by the standard rate equations together with an energy balance equation, where the input power includes the Auger recombination term E eff C A n3, where E eff is an effective energy transferred into the carrier system per each act of pair recombination:

nk(TeT)τε=EeffCAn3.
(2)

g(n,Te)=Γg0(1fefh),
(3)

where fe and fh are the Fermi functions, describing the occupation of electrons and holes, respectively, at the bottom of the quantum well, viz.

fe(n,Te)=1eπħ2nmekTe
(4a)
fh(n,Te)=1eπħ2nmhkTe
(4b)

Figure 1 shows the two-parameter surface describing the dependence of gain (3) on both the carrier concentration and temperature. The assumed parameters are indicated in the caption. The contours of constant gain of the 2D surface g(n,Te) are the isogain curves we are interested in. These curves are shown in Fig. 2 in blue color with each isogain labeled by the value of α in cm-1. The red curves in Fig. 2 show the relation between T e and n that results from the energy balance (2). The intersection between these curves and an isogain g = α determines the generation point for given loss α. Thus, for α=112 cm-1 there is a robust generation region at T=25K while for T=75K the generation condition is barely reachable; for T=125K and α=112 cm-1 the lasing regime cannot be reached.

Figure 1. Dependence of the modal gain (3) on the carrier concentration n and temperature Te. Device comprises N=10 quantum wells of width 15 nm, g 0 = 103 cm-1, the mode confinement factor Γ=0.01N =0.1, the effective energy transferred per carrier pair E eff = 1.5E GE G = 0.75 eV , where E G=0.3eV is the bandgap in the active region and ΔE G=0.3eV is the band discontinuity between the active region and the cladding; the energy relaxation time τε=10-12s, the Auger coefficient C A=10-26 cm6/s , and the effective carrier masses are m e=0.025 m 0 and m h=20 m e.
Figure 2. The contours of constant gain for the g (n,Te) of Fig.1. The isogain curves are shown in blue color for selected values of modal gain g=α indicated in units of cm-1. Red curves show the relation between T e and n from the energy balance (2).

2.2 Quantum cascade laser

The QCL model used is described in Ref. [8

8. Vera Gorfinkel, Serge Luryi, and Boris Gelmont, “Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations”, IEEE J. Quantum Electron. 32, 1995–2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]

]. The energy balance equation is of the form

nk(TeT)τε=n2τ21
(5)

where n is the total sheet carrier concentration in both subbands, n 2 is the electron concentration in the upper subband, and τ21 is the intersubband transition rate. The latter depends on the carrier temperature, being mainly determined by the emission of polar optic phonons. Equation (5 ) assumes that all carriers in each cascade period of the QCL have the same temperature, which is a reasonable approximation if n is not too low [8

8. Vera Gorfinkel, Serge Luryi, and Boris Gelmont, “Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations”, IEEE J. Quantum Electron. 32, 1995–2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]

]. The value of τ21 affects the QCL operation not only through the energy balance (5) but primarily because it controls the subband population ratio,

n1n2=τ1outτ21
(6)

The dependence τ21 = τ21(T e) was calculated in our earlier work [9

9. M. V. Kisin, V. B. Gorfinkel, M. A. Stroscio, G. Belenky, and S. Luryi, “Influence of complex phonon spectra on intersubband optical gain”, J. Appl. Phys. 82, 2031–2038 (1997); http://www.ee.sunysb.edu/~serge/148.pdf [CrossRef]

] and is shown in Fig.3. The value of τ1out describing the escape of electrons from the quantum well was assumed independent of the carrier temperature and equal 0.5 ps.

Figure 3. Temperature dependence of the intersubband transition rate in a model quantum cascade laser.
Figure 4. The 2D surface g(n,T e ) for a model quantum cascade laser.

The 2D surface g(n,Te) calculated in the model [8

8. Vera Gorfinkel, Serge Luryi, and Boris Gelmont, “Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations”, IEEE J. Quantum Electron. 32, 1995–2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]

,9

9. M. V. Kisin, V. B. Gorfinkel, M. A. Stroscio, G. Belenky, and S. Luryi, “Influence of complex phonon spectra on intersubband optical gain”, J. Appl. Phys. 82, 2031–2038 (1997); http://www.ee.sunysb.edu/~serge/148.pdf [CrossRef]

] of intersubband transitions is shown in Fig. 4. The model assumes a quasi-equilibrium distribution of electrons in each of the two subbands, characterized by the same effective temperature. The population ratio between the subbands is given by (6). The contours of constant gain g=α, corresponding to the surface g(n,Te) are plotted in Fig. 5 in blue with the values of α indicated. The red lines correspond to the Te versus n relation as given by the energy balance equation (5). Evidently, in the present model the temperature does not vary with the overall concentration n=n 1+n 2 so long as the ratio n 1/n 2 is fixed and that depends on temperature only.

Figure 5. The contours of constant gain (blue) for the g(n,Te) surface of Fig.4. Red lines indicate the carrier temperature as fixed by equations (5) and (6). In the present model of carrier heating the carrier temperature T e is independent of n.

The shape of isogain curves in Fig. 5 reflects the fact that the sign of g in this model is fixed by the ratio of subband concentrations. If the gain is positive, it increases with n, if it is negative it decreases with n. Evidently, at the transparency value, which is attained when n 1=n 2 , i.e., at the temperature when τ21(Te)=τ1out , the gain is independent of the overall sheet carrier density in the quantum well.

Conclusion.

We have illustrated a powerful and convenient way of analyzing the situation when the optical gain in a semiconductor laser is a strong function of a parameter other than the carrier concentration. An example (but by no means the only example) of such a parameter is the effective carrier temperature, which has a strong influence on the operation of all long wavelength quantum well lasers. The phase portrait of the laser gain function, represented by the “isogain” contours g=a on the surface g(n, T e) contains valuable information and offers a unique view of the highly nonlinear device.

Acknowledgement.

This work was supported by the U.S. Army Research Office under grant DAAG55-97-1-0009

References and links

1.

S. Luryi, “Hot electrons in semiconductor devices”, in Hot Electrons in Semiconductors, N. Balkan, ed. (Oxford University Press,1998) pp. 385–427; http://www.ee.sunysb.edu/~serge/152.dir/152.html

2.

V. B. Gorfinkel and S. Luryi, “Fundamental limits for linearity of CATV lasers”, J. Lightwave Technol. 13, 252–260 (1995); http://www.ee.sunysb.edu/–~serge/133.html [CrossRef]

3.

M. Silver, E. P. O’Reilly, and A. R. Adams, “Determination of the wavelength dependence of Auger recombination in long-wavelength quantum-well semiconductor lasers using hydrostatic pressure”, IEEE J. Quantum Electron. 33, 1557–1566 (1997). [CrossRef]

4.

Z. Shi, M. Tacke, A. Lambrecht, and H. Böttner, “Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation”, Appl. Phys. Lett. 66, 2537–2539 (1995). [CrossRef]

5.

H. K. Choi, G. W. Turner, and H. Q. Le, “InAsSb/InAlAs strained quantum-well lasers emitting at 4.5 μm ”, Appl. Phys. Lett. 66, 3543–3545 (1995). [CrossRef]

6.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers”, Electron Lett. 32, 45–46 (1996). [CrossRef]

7.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, “High power mid-infrared (λ~5μm) quantum cascade lasers operating above room temperature”, Appl. Phys. Lett. 68, 3680–3682 (1996). [CrossRef]

8.

Vera Gorfinkel, Serge Luryi, and Boris Gelmont, “Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations”, IEEE J. Quantum Electron. 32, 1995–2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]

9.

M. V. Kisin, V. B. Gorfinkel, M. A. Stroscio, G. Belenky, and S. Luryi, “Influence of complex phonon spectra on intersubband optical gain”, J. Appl. Phys. 82, 2031–2038 (1997); http://www.ee.sunysb.edu/~serge/148.pdf [CrossRef]

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Focus Issue: Quantum well laser design

History
Original Manuscript: November 4, 1997
Published: February 16, 1998

Citation
Vera Gorfinkel, Mikhail Kisin, and Serge Luryi, "Hot electrons and curves of constant gain in long wavelength quantum well lasers," Opt. Express 2, 125-130 (1998)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-2-4-125


Sort:  Journal  |  Reset  

References

  1. S. Luryi, "Hot electrons in semiconductor devices", in Hot Electrons in Semiconductors, N. Balkan, ed. (Oxford University Press, 1998) pp. 385-427; http://www.ee.sunysb.edu/~serge/152.dir/152.html
  2. V. B. Gorfinkel and S. Luryi, "Fundamental limits for linearity of CATV lasers", J. Lightwave Technol. 13, 252-260 (1995); http://www.ee.sunysb.edu/~serge/133.html [CrossRef]
  3. M. Silver, E. P. OReilly, and A. R. Adams, Determination of the wavelength dependence of Auger recombination in long-wavelength quantum-well semiconductor lasers using hydrostatic pressure, IEEE J. Quantum Electron. 33, 1557-1566 (1997). [CrossRef]
  4. Z. Shi, M. Tacke, A. Lambrecht, and H. Bttner, Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation, Appl. Phys. Lett. 66, 2537-2539 (1995). [CrossRef]
  5. H. K. Choi, G. W. Turner, and H. Q. Le, InAsSb/InAlAs strained quantum-well lasers emitting at 4.5 Pm, Appl. Phys. Lett. 66, 3543-3545 (1995). [CrossRef]
  6. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, Type-II and Type-I interband cascade lasers, Electron Lett. 32, 45-46 (1996). [CrossRef]
  7. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, High power mid-infrared (OaPm) quantum cascade lasers operating above room temperature, Appl. Phys. Lett. 68, 3680-3682 (1996). [CrossRef]
  8. Vera Gorfinkel, Serge Luryi, and Boris Gelmont, "Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations", IEEE J. Quantum Electron. 32, 1995-2003 (1996); http://www.ee.sunysb.edu/~serge/145.html [CrossRef]
  9. M. V. Kisin, V. B. Gorfinkel, M. A. Stroscio, G. Belenky, and S. Luryi, Influence of complex phonon spectra on intersubband optical gain, J. Appl. Phys. 82, 2031-2038 (1997); http://www.ee.sunysb.edu/~serge/148.pdf [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited