OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 2, Iss. 7 — Mar. 30, 1998
  • pp: 262–267
« Show journal navigation

Relativistic signatures in laser-assisted scattering at high field intensities

C. Szymanowski and A. Maquet  »View Author Affiliations


Optics Express, Vol. 2, Issue 7, pp. 262-267 (1998)
http://dx.doi.org/10.1364/OE.2.000262


View Full Text Article

Acrobat PDF (478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complete Dirac-Volkov relativistic treatment of the first Born limit of laser-assisted potential scattering of electrons within a circularly polarized laser field has been compared to the nonrelativistic Bunkin-Fedorov approach. The dependence of the quiver energy on the electron four-momentum in an ultrastrong laser field leads to different energy transfer cross sections depending on the scattering geometry with respect to the laser propagation direction. Visible differences between the relativistic and non-relativistic differential cross sections for small-angle scattering occur already for 1016 W/cm2 intensity of near infrared wavelength and moderate electron initial energies.

© Optical Society of America

The availability of very intense ultrashort laser pulses of near-infrared radiation in a number of research laboratories [1

1. see, for instance, “High-field interactions and short-wavelength generation”, edited by H. Milch-berg and R. Freeman, part 1 of special issue of J. Opt. Soc. Am. B13, 51–222 (1996).

,2

2. see, for instance, “High-field interactions and short-wavelength generarion”, edited by H. Milch-berg and R. Freeman, part 2 of special issue of J. Opt. Soc. Am. B13, 314–468 (1996).

] enables now investigations of laser-induced processes in ultrastrong fields well beyond the atomic field strength intensity in the range of 1016 W/cm2 – 1019 W/cm2. Recent exciting experiments give clear evidence of several relativistic effects [3

3. D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berrigde, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D.A. Reis, and W. Ragg, “Positron Production in Multiphoton Light-by-Light Scattering”, Phys. Rev. Lett. 79, 1626–1629 (1997). [CrossRef]

,4

4. C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, W. Ragg, D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E. Spencer, D. Walz, S. C. Berrigde, W. M. Bugg, K. Shmakov, and A. W. Weidemann, “Observation of Nonlinear Effects in Compton Scattering”, Phys. Rev. Lett. 76, 3116–3119 (1996). [CrossRef] [PubMed]

,5

5. P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, and A. E. Dangor, “Efficient Extreme UV Harmonics Generated from Picosecond Laser Pulse Interactions with Solid Targets”, Phys. Rev. Lett. 76, 1832–1835 (1996). [CrossRef] [PubMed]

,6

6. P. Monot, T. Auguste, P. Gibbon, F. Jakober, G. Mainfray, A. Dulieu, M. Louis-Jacquet, G. Malka, and J. L. Miquel, “Experimental Demonstration of Relativistic Self-Channeling of a Multiterawatt Laser Pulse in an Underdense Plasma”, Phys. Rev. Lett. 74, 2953–2956 (1995). [CrossRef] [PubMed]

,7

7. C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the Transition from Thomson to Compton Scattering in Multiphoton Interactions with Low-Energy Electrons”, Phys. Rev. Lett. 74, 2439–2442 (1995). [CrossRef] [PubMed]

], and there is considerable interest in theoretical predictions. It has already been noticed in early studies in the 1960s [8

8. L. S. Brown and T. W. B. Kibble, “Interaction of Intense Laser Beams with Electrons”, Phys. Rev. 133, A705 (1964). [CrossRef]

,9

9. H. R. Reiss, “Absorption of Light by Light”, J. Math. Phys. 3, 59–67 (1962). [CrossRef]

,10

10. I. I. Gol’dman, “Intensity Effects in Compton Scattering”, Zh. Éksp. Teor. Fiz. 46, 1412–1417 (1964) [Sov. Phys. JETP 19, 954–957 (1964)].

,11

11. A. I. Nikishov and V. I. Ritus, “Quantum Processes in the field of a plane electromagnetic wave and in a constant field I”, Zh. Éksp. Teor. Fiz. 46, 776–796 (1964) [Sov. Phys. JETP 19, 529–541 (1964)].

,12

12. A. I. Nikishov and V. I. Ritus, “Quantum Processes in the field of a plane electromagnetic wave and in a constant field II” Zh. Éksp. Teor. Fiz. 46, 1768–1781 (1964) [Sov. Phys. JETP 19, 1191–1199 (1964)].

,13

13. J. H. Eberly, “Proposed Experiment for Observation of Nonlinear Compton Wavelength Shift”, Phys. Rev. Lett. 15, 91–93 (1965). [CrossRef]

,15

15. J. H. Eberly and H. R. Reiss, “Electron Self-Energy in Intense Plane-Wave Field”, Phys. Rev. 145, 1035 (1966). [CrossRef]

,16

16. H. R. Reiss and J. H. Eberly, “Green’s function in intense field electrodynamics”, Phys. Rev. 151, 1058–1066 (1966). [CrossRef]

,17

17. J. H. Eberly, “Interaction of very intense light with free electrons”, Prog. Opt. 7, 361–415, edited by E. Wolf, (Noth-Holland, Amsterdam, 1969).

], that in this regime the averaged quiver energy becomes relativistic and as well dependent on the four-momentum of the electron. The first Born nonrelativistic treatment of laser-assisted collisions by Bunkin and Fedorov [18

18. F. V. Bunkin and M. V. Fedorov, “Bremsstrahlung in a strong radiation field”, Zh. Éksp. Teor. Fiz. 49, 1215–1221 (1965) [Sov. Phys. JETP 22, 844–847 (1966)].

] has formally been extended to the relativistic domain by Denisov and Fedorov [19

19. M. M. Denisov and M. V. Fedorov, “Bremsstrahlung effect on relativistic electrons in a strong radiation field”, Zh. Éksp. Teor. Fiz. 53, 1340–1348 (1967) [Sov. Phys. JETP 26779–783 (1968)].

]. Recently, the interplay of spin-orbit and spin-laser interaction in Coulomb scattering in strong laser fields has been discussed in detail, especially for large-angle diffusion, demonstrating the importance of the full Dirac-Volkov treatment [20

20. C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, and C. H. Keitel, “Mott scattering in strong laser fields”, Phys. Rev. A 563846–3859 (1997). [CrossRef]

]. The purpose of the present contribution is to show that the modifications of the differential cross section for small-angle scattering in a Yukawa potential, chosen for account of screening effects in a plasma environment, in the presence of an ultraintense field provide a remarkable signature of relativistic effects in electron-laser interaction. Let us mention that also in strong-field ionization 1/c-corrections at relatively low laser intensity have been realized [21

21. V. P. Krainov and S. P. Roshupkin, “Relativistic effects in the angular distribution of ejected electrons in tunneling ionization of atoms by strong electromagnetic fields”, J. Opt. Soc. Am. B9, 1231–1233 (1992).

].

The principal steps of the relativistic calculation are briefly outlined before proceeding to some selected results of our investigations. The solutions to the Dirac equation for an electron with four-momentum pμ (outside the field and genuine quantum number) inside a circularly polarized plane wave with vector potential Aμ and wavevector kμ propagating along the êz direction read in Feynman slash notation [22

22. V. B. Berestetzkiĭ, E. M. Lifshitz, and L. P. Pitaevskiĭ, Quantum Electrodynamics, 2nd Edition (Pergamon Press, Oxford, 1982).

,23

23. D. M. Volkov, “Uber eine Klasse von Lösungen der Diracschen Gleichung”, Z. f. Phys. 94,250–260 (1935). [CrossRef]

]:

ψq=xq=[1+kA2c(kp)]×u2QV×exp[i(qx)i0kx(pA)c(kp)],
(1)

where u represents a free bispinor normalized by ūu = u * γ 0 u = 2c 2 in the volume V. The physical significance of qμ = (Q/c,q⃗) is the averaged four-momentum (dressed momentum) of the particle inside the laser field: qμ = pμ - kμ [A 2/2(kp)c 2]. p⃗ and q⃗ have different longitudinal but equal transverse momentum projections with respect to k⃗. This implies that angles might change due to field envelope effects [24

24. S. P. Goreslavskiĭ, “The BSI model and relativistic ponderomotive scattering”, Laser Phys. 6, 74–78 (1996).

,25

25. N. B. Narozhnyi and M. S. Fofanov, “Creation of a pair by a photon colliding with a short focused laser pulse”, Laser Phys. 7, 141–149 (1997).

]. For scattering off a Yukawa-type potential the matrix element for the transition ∣q⟩ → ∣q′⟩ is

Tqq=iZcd4xψ¯qγ0exp(αx)xψq.
(2)

The first Born approximation is certainly valid for the high energies of the incoming projectiles in ultrastrong fields. The breakdown of the validity of the model is expected at intensities so high that pair creation (and also radiative reaction [26

26. C. H. Keitel, C. Szymanowski, P. L. Knight, and A. Maquet, “Radiative reaction in ultra-intense laser-atom interaction”, J. Phys. B 31, L75–L83 (1998). [CrossRef]

,27

27. F. V. Hartemann and A. K. Kerman, “Classical Theory of Nonlinear Compton Scattering”, Phys. Rev. Lett. 76, 624–627 (1996). [CrossRef] [PubMed]

]) becomes significant.

The essential steps in the explicit calculation of the cross section are: Using trigonometric relations and the generating function of ordinary Bessel functions Jn a sum over Fourier components whose order are associated to the net number of exchanged photons is obtained which leads to well-known Fourier transform integrals of the central potential. The appropriate expression for the square of the δ-function is given by the usual procedure [22

22. V. B. Berestetzkiĭ, E. M. Lifshitz, and L. P. Pitaevskiĭ, Quantum Electrodynamics, 2nd Edition (Pergamon Press, Oxford, 1982).

]. This leads to the expression for the differential cross section into the solid angle o :

do=ndσ(n)doQ=Q+,
(3)

where ∣q⃗′∣ is fixed through the condition qμqμ = q′μ qμ. The differential cross section (n)/do for each net n-photon process for unpolarized projectiles is [20

20. C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, and C. H. Keitel, “Mott scattering in strong laser fields”, Phys. Rev. A 563846–3859 (1997). [CrossRef]

]:

dσ(n)do=Z2qc2q×1(qq+nk)2+α22×(
2Jn(ζ)2{[c2+QQc2+qq+A22c2((kq˜)(kq)+(kq˜)(kq))+(A2)2ω22c6(kq)(kq)]×
(1A2ω2c4(kq)(kq))A22c2[1(kq˜)(kq˜)(kq)(kq)]+(A2)2ω2c6(kq)(kq)+(A2)2ω22c6(kq)2(kq)2[(kq)(kq˜)+(kq)(kq˜)+A2ω2c4]}
+[Jn+1(ζ)2+Jn1(ζ)2]{A22c2[(kq˜)(kq)+(kq˜)(kq)+1+(kq˜)(kq˜)2ω2(kq)(kq)]}
+2A2ω2c4(kq)(kq)+A2ω2c4(kq)(kq)((kq)(kq˜)+(kq)(kq˜)+A2ω2c4)
2ω2c2(kq)(kq)(QQc2+qq+A22c2((kq˜)(kq)+(kq˜)(kq))+(A2)2ω22c6(kq)(kq)))]
+2A2ω2c4(kq)(kq)[qxqx+qyqy]}+Jn+1(ζ)Jn1(ζ)cos(2ϕ0)2A2ω2c4(kq)(kq)
×[qxqxqyqy]+Jn(ζ)[Jn+1(ζ)+Jn1(ζ)]{2A2ω2c4(kq)(kq)[(Åq)c
+(Åq)c]+(Åq)(kq˜)c(kq)+(Åq)c+(Åq)c+(Åq)(kq˜)c(kq)})Q=Q+.
(4)

Here the following abbreviations are used: ṽμ denotes (v 0, -vi), ζ = A {(px/c(kp) - px/c(kp′)]2 + [py/c(kp) - py/c(kp′)]2}1/2, ϕ 0 = arccos{A[px/(kp) - px/(kp′)]/} and Å ≡ A(0, cosϕ 0, sinϕ 0, 0). The influence of the spin-laser interaction on the degree of polarization of initially polarized electrons has also been studied [28

28. C. Szymanowski, R. Taïeb, and A. Maquet, “Laser-assisted scattering of polarized electrons at high field intensities”, Laser Phys. 8, 102–106 (1998).

].

The magnitude of the cross section of each n-photon energy transfer depends crucially on the weight given by the squares and products of Bessel functions. It is shown below that the main changes occurring in the final energy spectra are caused by the differences between the argument ζ and its nonrelativistic limit. The physical meaning of ζ is the maximal attainable transient energy difference per photon energy during a collision [20

20. C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, and C. H. Keitel, “Mott scattering in strong laser fields”, Phys. Rev. A 563846–3859 (1997). [CrossRef]

]. It describes the ”overlap” of the energy dressing of the Volkov states weighted by Bessel functions for each n-photon contribution. Simulations have been performed in a wide range of parameters of intensities and for ω = 0.043 a.u., corresponding to the Neodymium laser angular frequency (1.17eV photon energy). For illustrating the main features of our results we will concentrate here on the case of small-angle scattering, which dominates the total cross section.

Consider Fig. 1: Differential cross sections for a deflection angle of ∠(q⃗,q⃗′) = 0.6mrad are shown for an intensity of 3.5 × 1016 W/cm2 and a moderate initial electron energy of W kin ≃ 2.7keV . The red curve gives the envelope of the result according to Eq. (4) for an incoming electron with momentum parallel to the laser propagation direction k⃗, while the yellow curve denotes the case of antiparallel propagation. The black line sketches the nonrelativistic result virtually independent from the direction of k⃗. A significant dependence on geometry of the amount of photon energy transfer is noticed.

Fig. 1. Envelope of differential cross section /do in atomic units as a function of energy transfer ΔQ scaled in units of the laser photon energy ω for an electrical field strength of E = 1 a.u. or vector potential A = Ec/ω = 3186a.u. . The Yukawa parameter is α = 0.25, the deflection angle equals ∠(q⃗,q⃗′) = 0.0002π and the initial kinetic energy is W kin = 100 a.u. . The different curves are explained in the text.

The obvious discrepancies in the weights of each n-photon process can be traced back to the sensitivity of the Bessel functions to variations of their arguments ζ, meaning to the change in the energy dressing difference. The simulations clearly show that the nonrelativistic limit 1/ω of the four-product 1/(kp) is not any longer a good approximation in this laser intensity regime. In fact, for a kinetic energy of W kin = E - c 2 ≃ 2.7keV the differences amount to about +11% in propagation direction parallel to k⃗ and about -9% in direction antiparallel to k⃗. In the full Dirac-Volkov treatment, four-vector products of this form come additionally into play due to the Volkov prefactor (∝ A) containing γ-matrices. However, these terms of the cross section describing the spin-laser interaction do not contribute significantly at intensities considered here.

The net photon energy transfer is even higher for more intense laser fields as is shown in Fig. 2. Here, differential cross sections for the same deflection angle of ∠(q⃗, q⃗′) = 0.6mrad and for a relativistically high intensity of about 1018 W/cm2 are plotted. The incoming electron energy is again about 2.7keV, and the incoming electron momentum is oriented parallely to the laser propagation direction. The red curve denotes the full Dirac-Volkov result according to equation 4. The black line corresponds to a simplified treatment for spinless relativistic particles, while the yellow line sketches the outcome of the nonrelativistic calculation. The discrepancy between the relativistic and nonrelativistic treatments amount now to a factor 2 in the occurence of the cutoff. The maximal energy transfer is fixed by the condition nζ when the Bessel functions reach asymptotically the Airy function Ai. One can verify in classical terms that ζ corresponds to the maximal attainable transient energy difference per photon energy of the electron travelling in the laser field. Nevertheless in comparison to the spinless particle case the complete Dirac-Volkov calculation predicts a higher cross section due to the spin-laser interaction pushing the electron in the laser propagation direction. This effect is mediated by the additional terms in Eq. 4 proportional to powers of A. In comparison, the blue line denotes the contribution arising only from the first part of the Volkov prefactor (∝ 1) which is largely dominating in the nonrelativistic and moderately relativistic intensity regime.

Fig. 2. Envelope of differential cross section /do scaled in atomic units as a function of energy transfer ΔQ scaled in units of the laser photon energy ω for an electrical field strength of E = ωc = 5.89 a.u. or vector potential A = c 2 = 18769 a.u.. The parameter α, the deflection angle and the initial kinetic energy are the same as for Fig. 1. The different curves are explained in the text.

In brief, our calculations show that at laser intensities currently available in the near-infrared significant relativistic effects in small-angle laser-assisted scattering occur already for moderate electron energies. The influence of relativity essentially is the dependence of the differential cross section for fixed deflection angle on the orientation of the scattering geometry of the scattering with respect to the laser propagation direction. A larger net photon energy transfer is predicted in comparison to the nonrelativistic calculation in this direction.

C.S. acknowledges a DAAD-fellowship HSP III financed by the German Ministry of Education, Science, Research and Technology. This work is supported as well in part by the European Union through contract CRB CHRX CT 940470. The Laboratoire de Chimie Physique — Matière et Rayonnement is UMR 7614 du CNRS. Valuable discussions with Drs. R. Taïeb, V. Véniard and C. H. Keitel and with Profs. H. R. Reiss and M. V. Fedorov at the LPHYS’97 workshop in Prague are gratefully acknowledged.

References

1.

see, for instance, “High-field interactions and short-wavelength generation”, edited by H. Milch-berg and R. Freeman, part 1 of special issue of J. Opt. Soc. Am. B13, 51–222 (1996).

2.

see, for instance, “High-field interactions and short-wavelength generarion”, edited by H. Milch-berg and R. Freeman, part 2 of special issue of J. Opt. Soc. Am. B13, 314–468 (1996).

3.

D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berrigde, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D.A. Reis, and W. Ragg, “Positron Production in Multiphoton Light-by-Light Scattering”, Phys. Rev. Lett. 79, 1626–1629 (1997). [CrossRef]

4.

C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, W. Ragg, D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E. Spencer, D. Walz, S. C. Berrigde, W. M. Bugg, K. Shmakov, and A. W. Weidemann, “Observation of Nonlinear Effects in Compton Scattering”, Phys. Rev. Lett. 76, 3116–3119 (1996). [CrossRef] [PubMed]

5.

P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, and A. E. Dangor, “Efficient Extreme UV Harmonics Generated from Picosecond Laser Pulse Interactions with Solid Targets”, Phys. Rev. Lett. 76, 1832–1835 (1996). [CrossRef] [PubMed]

6.

P. Monot, T. Auguste, P. Gibbon, F. Jakober, G. Mainfray, A. Dulieu, M. Louis-Jacquet, G. Malka, and J. L. Miquel, “Experimental Demonstration of Relativistic Self-Channeling of a Multiterawatt Laser Pulse in an Underdense Plasma”, Phys. Rev. Lett. 74, 2953–2956 (1995). [CrossRef] [PubMed]

7.

C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the Transition from Thomson to Compton Scattering in Multiphoton Interactions with Low-Energy Electrons”, Phys. Rev. Lett. 74, 2439–2442 (1995). [CrossRef] [PubMed]

8.

L. S. Brown and T. W. B. Kibble, “Interaction of Intense Laser Beams with Electrons”, Phys. Rev. 133, A705 (1964). [CrossRef]

9.

H. R. Reiss, “Absorption of Light by Light”, J. Math. Phys. 3, 59–67 (1962). [CrossRef]

10.

I. I. Gol’dman, “Intensity Effects in Compton Scattering”, Zh. Éksp. Teor. Fiz. 46, 1412–1417 (1964) [Sov. Phys. JETP 19, 954–957 (1964)].

11.

A. I. Nikishov and V. I. Ritus, “Quantum Processes in the field of a plane electromagnetic wave and in a constant field I”, Zh. Éksp. Teor. Fiz. 46, 776–796 (1964) [Sov. Phys. JETP 19, 529–541 (1964)].

12.

A. I. Nikishov and V. I. Ritus, “Quantum Processes in the field of a plane electromagnetic wave and in a constant field II” Zh. Éksp. Teor. Fiz. 46, 1768–1781 (1964) [Sov. Phys. JETP 19, 1191–1199 (1964)].

13.

J. H. Eberly, “Proposed Experiment for Observation of Nonlinear Compton Wavelength Shift”, Phys. Rev. Lett. 15, 91–93 (1965). [CrossRef]

14.

T. W. B. Kibble, “Mutual Refraction of Electrons and Photons”, Phys. Rev. 150, 1060–1069 (1966). [CrossRef]

15.

J. H. Eberly and H. R. Reiss, “Electron Self-Energy in Intense Plane-Wave Field”, Phys. Rev. 145, 1035 (1966). [CrossRef]

16.

H. R. Reiss and J. H. Eberly, “Green’s function in intense field electrodynamics”, Phys. Rev. 151, 1058–1066 (1966). [CrossRef]

17.

J. H. Eberly, “Interaction of very intense light with free electrons”, Prog. Opt. 7, 361–415, edited by E. Wolf, (Noth-Holland, Amsterdam, 1969).

18.

F. V. Bunkin and M. V. Fedorov, “Bremsstrahlung in a strong radiation field”, Zh. Éksp. Teor. Fiz. 49, 1215–1221 (1965) [Sov. Phys. JETP 22, 844–847 (1966)].

19.

M. M. Denisov and M. V. Fedorov, “Bremsstrahlung effect on relativistic electrons in a strong radiation field”, Zh. Éksp. Teor. Fiz. 53, 1340–1348 (1967) [Sov. Phys. JETP 26779–783 (1968)].

20.

C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, and C. H. Keitel, “Mott scattering in strong laser fields”, Phys. Rev. A 563846–3859 (1997). [CrossRef]

21.

V. P. Krainov and S. P. Roshupkin, “Relativistic effects in the angular distribution of ejected electrons in tunneling ionization of atoms by strong electromagnetic fields”, J. Opt. Soc. Am. B9, 1231–1233 (1992).

22.

V. B. Berestetzkiĭ, E. M. Lifshitz, and L. P. Pitaevskiĭ, Quantum Electrodynamics, 2nd Edition (Pergamon Press, Oxford, 1982).

23.

D. M. Volkov, “Uber eine Klasse von Lösungen der Diracschen Gleichung”, Z. f. Phys. 94,250–260 (1935). [CrossRef]

24.

S. P. Goreslavskiĭ, “The BSI model and relativistic ponderomotive scattering”, Laser Phys. 6, 74–78 (1996).

25.

N. B. Narozhnyi and M. S. Fofanov, “Creation of a pair by a photon colliding with a short focused laser pulse”, Laser Phys. 7, 141–149 (1997).

26.

C. H. Keitel, C. Szymanowski, P. L. Knight, and A. Maquet, “Radiative reaction in ultra-intense laser-atom interaction”, J. Phys. B 31, L75–L83 (1998). [CrossRef]

27.

F. V. Hartemann and A. K. Kerman, “Classical Theory of Nonlinear Compton Scattering”, Phys. Rev. Lett. 76, 624–627 (1996). [CrossRef] [PubMed]

28.

C. Szymanowski, R. Taïeb, and A. Maquet, “Laser-assisted scattering of polarized electrons at high field intensities”, Laser Phys. 8, 102–106 (1998).

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.4180) Atomic and molecular physics : Multiphoton processes
(020.5580) Atomic and molecular physics : Quantum electrodynamics

ToC Category:
Focus Issue: Relativistic effects in strong eectromagnetic fields

History
Original Manuscript: October 28, 1997
Published: March 30, 1998

Citation
Carsten Szymanowski and Alfred Maquet, "Relativistic signatures in laser-assisted scattering at high field intensities," Opt. Express 2, 262-267 (1998)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-2-7-262


Sort:  Journal  |  Reset  

References

  1. see, for instance, "High-field interactions and short-wavelength generation", edited by H. Milchberg and R. Freeman, part 1 of special issue of J. Opt. Soc. Am. B13, 51-222 (1996).
  2. see, for instance, "High-field interactions and short-wavelength generarion", edited by H. Milchberg and R. Freeman, part 2 of special issue of J. Opt. Soc. Am. B13, 314-468 (1996).
  3. D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berrigde, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D.A. Reis, and W. Ragg, "Positron Production in Multiphoton Light-by-Light Scattering", Phys. Rev. Lett. 79, 1626-1629 (1997). [CrossRef]
  4. C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, W. Ragg, D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E. Spencer, D. Walz, S. C. Berrigde, W. M. Bugg, K. Shmakov, and A. W. Weidemann, "Observation of Nonlinear Effects in Compton Scattering", Phys. Rev. Lett. 76, 3116-3119 (1996). [CrossRef] [PubMed]
  5. P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, M. Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, and A. E. Dangor, "Efficient Extreme UV Harmonics Generated from Picosecond Laser Pulse Interactions with Solid Targets", Phys. Rev. Lett. 76, 1832-1835 (1996). [CrossRef] [PubMed]
  6. P. Monot, T. Auguste, P. Gibbon, F. Jakober, G. Mainfray, A. Dulieu, M. Louis-Jacquet, G. Malka, and J. L. Miquel, "Experimental Demonstration of Relativistic Self-Channeling of a Multiterawatt Laser Pulse in an Underdense Plasma", Phys. Rev. Lett. 74, 2953-2956 (1995). [CrossRef] [PubMed]
  7. C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, "Observation of the Transition from Thomson to Compton Scattering in Multiphoton Interactions with Low-Energy Electrons", Phys. Rev. Lett. 74, 2439-2442 (1995). [CrossRef] [PubMed]
  8. L. S. Brown and T. W. B. Kibble, "Interaction of Intense Laser Beams with Electrons", Phys. Rev. 133, A705 (1964). [CrossRef]
  9. H. R. Reiss, "Absorption of Light by Light", J. Math. Phys. 3, 59-67 (1962). [CrossRef]
  10. I. I. Gol'dman, "Intensity Effects in Compton Scattering", Zh. Eksp. Teor. Fiz. 46, 1412-1417 (1964) [Sov. Phys. JETP 19, 954-957 (1964)].
  11. A. I. Nikishov and V. I. Ritus, "Quantum Processes in the field of a plane electromagnetic wave and in a constantfieldI",Zh. Eksp. Teor. Fiz. 46, 776-796 (1964) [Sov. Phys. JETP 19, 529-541 (1964)].
  12. A. I. Nikishov and V. I. Ritus, "Quantum Processes in the field of a plane electromagnetic wave and in a constant field II" Zh. Eksp. Teor. Fiz. 46, 1768-1781 (1964) [Sov. Phys. JETP 19, 1191-1199 (1964)].
  13. J. H. Eberly, "Proposed Experiment for Observation of Nonlinear Compton Wavelength Shift", Phys. Rev. Lett. 15, 91-93 (1965). [CrossRef]
  14. T. W. B. Kibble, "Mutual Refraction of Electrons and Photons", Phys. Rev. 150, 1060 - 1069 (1966). [CrossRef]
  15. J. H. Eberly and H. R. Reiss, "Electron Self-Energy in Intense Plane-Wave Field", Phys. Rev. 145, 1035 (1966). [CrossRef]
  16. H. R. Reiss and J. H. Eberly, "Green's function in intense field electrodynamics", Phys. Rev. 151, 1058-1066 (1966). [CrossRef]
  17. J. H. Eberly, "Interaction of very intense light with free electrons", Prog. Opt. 7, 361-415, edited by E. Wolf, (Noth-Holland, Amsterdam, 1969).
  18. F. V. Bunkin and M. V. Fedorov, " Bremsstrahlung in a strong radiation field", Zh. Eksp. Teor. Fiz. 49, 1215-1221 (1965) [Sov. Phys. JETP 22, 844-847 (1966)].
  19. M. M. Denisov and M. V. Fedorov, "Bremsstrahlung effect on relativistic electrons in a strong radiation field", Zh. Eksp. Teor. Fiz. 53, 1340-1348 (1967) [Sov. Phys. JETP 26 779-783 (1968)].
  20. C. Szymanowski, V. Veniard, R. Taieb, A. Maquet, and C. H. Keitel, "Mott scattering in strong laser fields", Phys. Rev. A 56 3846-3859 (1997). [CrossRef]
  21. V. P. Krainov and S. P. Roshupkin, "Relativistic effects in the angular distribution of ejected electrons in tunneling ionization of atoms by strong electromagnetic fields", J. Opt. Soc. Am. B9, 1231-1233 (1992).
  22. V. B. Berestetzkii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd Edition (Pergamon Press, Oxford, 1982).
  23. D. M. Volkov, "Uber eine Klasse von L" osungen der Diracschen Gleichung", Z. f. Phys. 94, 250-260 (1935). [CrossRef]
  24. S. P. Goreslavskii, "The BSI model and relativistic ponderomotive scattering", Laser Phys. 6, 74-78 (1996).
  25. N. B. Narozhnyi and M. S. Fofanov, "Creation of a pair by a photon colliding with a short focused laser pulse", Laser Phys. 7, 141-149 (1997).
  26. C. H. Keitel, C. Szymanowski, P. L. Knight, and A. Maquet, "Radiative reaction in ultra-intense laser-atom interaction", J. Phys. B 31, L75-L83 (1998). [CrossRef]
  27. F. V. Hartemann and A. K. Kerman, "Classical Theory of Nonlinear Compton Scattering", Phys. Rev. Lett. 76, 624-627 (1996). [CrossRef] [PubMed]
  28. C. Szymanowski, R. Taieb, and A. Maquet, "Laser-assisted scattering of polarized electrons at high field intensities", Laser Phys. 8, 102-106 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited