OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11487–11495
« Show journal navigation

Active metal strip hybrid plasmonic waveguide with low critical material gain

Linfei Gao, Liangxiao Tang, Feifei Hu, Ruimin Guo, Xingjun Wang, and Zhiping Zhou  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11487-11495 (2012)
http://dx.doi.org/10.1364/OE.20.011487


View Full Text Article

Acrobat PDF (1155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An active metal strip hybrid plasmonic waveguide (MSHPW) using gain materials as loss compensation is proposed with an extremely simple fabrication procedure. Gain materials are introduced either in the low-index layer or in the high-index layer of MSHPW. The effects of waveguide dimensions and material gain coefficients on loss compensation are analyzed at the communication wavelength. For one configuration presented here, a critical material gain as low as 3.8cm−1 is sufficient for fully compensation of the loss when using a high-index gain material. The active MSHPW with low critical material gain opens up opportunities for practical plasmonic devices in active applications such as amplifiers, sources, and modulators.

© 2012 OSA

1. Introduction

Plasmonics is drawing increased attention due to its outstanding capability of confining and controlling light beyond the diffraction limit [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

], thereby potentially enabling devices integration in nanoscale [2

2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

4

4. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18(18), 19009–19019 (2010). [CrossRef] [PubMed]

]. As the building block of integrated circuits, various plasmonic waveguides have been proposed [5

5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]

]. However, a typical challenge for plasmonic waveguides is the trade-off between propagation loss and field confinement. In other words, they can perform either low propagation loss with diffused field (e.g., long-range surface plasmon polaritons (LRSPP) [6

6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005). [CrossRef] [PubMed]

]), or compact mode size at the expense of large losses (e.g., metal-insulator-metal waveguides (MIM) [7

7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]

, 8

8. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]

]). Recently, a new type of plasmonic waveguide called “hybrid plasmonic waveguide (HPW)” was proposed to attempt both low propagation loss and strong field confinement [9

9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

14

14. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon- plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010). [CrossRef]

].

2. Waveguide structure

The waveguide geometry is shown in Fig. 1
Fig. 1 Schematic of the active metal strip hybrid plasmonic waveguide. Either the low-index dielectric gap or the high-index dielectric layer can be active region by introducing a gain material with proper refractive index.
. It is composed of a metal layer,a narrow low-index dielectric gap, a high-index dielectric layer, a buffer layer and substrate. In traditional HPW, the metal layer and the low index layer can be patterned to strips, and the high-index layer is usually patterned to a cylindrical [9

9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

] or rectangular [10

10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]

] core to provide lateral confinement. By contrast, in MSHPW, only the metal layer is patterned to strip, while the other layers are slabs (infinite in x direction). Therefore, the fabrication procedure for MSHPW is extremely simple.

Though a typical material system is taken for analysis, a wide range of materials, especially gain materials, can be utilized in this waveguide. For example, the low-index gain materials could be PMMA with PbS quantum dots [22

22. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]

], Er silicate [23

23. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2 /Si substrates,” Appl. Phys. Lett. 98(7), 071903 (2011). [CrossRef]

] etc., while the high-index gain materials could be InGaAsP [24

24. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]

], Er-doped silicon [25

25. C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, “Er-doped silicon nanowires with 1.54 μm light-emitting and enhanced electrical and field emission properties,” Appl. Phys. Lett. 91(9), 093133 (2007). [CrossRef]

], etc. MSHPW is practically suitable for active devices due to its unique properties. Firstly, there is no strict temperature limitation which is a typical obstacle for active plasmonic devices. Specifically, frequently-used metals for plasmonics such as Au and Ag cannot endure high temperature, while some gain materials such as nanocrystal silicon [26

26. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol. 3(3), 174–178 (2008). [CrossRef] [PubMed]

] and Er silicate [23

23. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2 /Si substrates,” Appl. Phys. Lett. 98(7), 071903 (2011). [CrossRef]

] need high temperature (e.g., around 1000°C) annealing process to obtain a good active performance. Therefore, in some cases (e.g., MIM waveguides), researchers need to take very complicated fabrication process [21

21. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef] [PubMed]

] to avoid the temperature’s incompatibility. By contrast, in MSHPW the metal layer is deposited at last and not affected by processes for other layers. Secondly, unlike some hybrid plasmonic waveguides which need to etch the low-index and high-index dielectric layers, MSHPW makes it possible to utilize those gain materials difficult to etch, such as the erbium silicate. In summary, MSHPW is compatible to a wide range of gain materials as well as chemical and physical processes, and this good compatibility makes it a promising candidate for practical active devices.

3. Simulation and analysis of the waveguide

As shown in Fig. 1, we suppose the propagation direction is along the z axis. There are two waveguide parameters that must be taken into account for optimization of the waveguide: the height of the low-index dielectric gap h and the width of the metal strip w. Apart from the metal layer, other layers are supposed to be infinite in x direction. For all cases below, heights of the metal strip and the high-index dielectric layer are fixed to be 100nm and 300nm, respectively. We set materials for the metal strip, the low-index gap, the high-index layer and the buffer layer as Ag, SiO2, Si, and SiO2, respectively. The telecommunication wavelength λ = 1550nm is chosen as the work wavelength and corresponding refractive indices for materials are nAg=0.1453+11.3587i,nSiO2 = 1.445 and nSi = 3.455.

3.1 Field profile

3.2 Dependence on the geometrical parameters

Geometrical parameters may have significant influence on waveguide performance, as discussed in [29

29. S. Massenot, J.-C. Weeber, A. Bouhelier, G. Colas des Francs, J. Grandidier, L. Markey, and A. Dereux, “Differential method for modeling dielectric-loaded surface plasmon polariton waveguides,” Opt. Express 16(22), 17599–17608 (2008). [CrossRef] [PubMed]

,30

30. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010). [CrossRef]

], which also refer to metal strips for surface plasmon. Here we carried out a detailed study about the effects of h and w on the effective index and propagation loss, and results are shown in Fig. 3
Fig. 3 (a) The real part of effective index neff' and (b) the propagation loss lm (dB/μm) for varying waveguide widths w and gap heights h.
. One sees that neff' rises as w increases or h decreases. The qualitative explanation is that dimensions affect the energy distribution in different areas of the structure. Specifically, when more power is confined in the area with high index, the corresponding neff' will be larger, and when smaller area of electromagnetic field interacts with the metal, lm will be smaller. Figure 3(b) suggests that lm can be made very low by reducing w and enlarging h simultaneously.

However, it is considerable whether the ability of confinement becomes weaker when decreasing waveguide width for lower losses. There are a few figures of merit to measure a mode’s confinement [31

31. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]

33

33. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008). [CrossRef]

].

Here we calculated the effective mode area Am as the merit for confinement ability, which is defined as the ratio of the total mode energy flux and the peak energy flux density [9

9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

, 18

18. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19(14), 12925–12936 (2011). [CrossRef] [PubMed]

], such that
Am=P(x,y)dxdymax[P(x,y)],
(2)
P(x,y)=E(x,y)×H(x,y),
(3)
where P(x,y) is the Poynting vector (mode energy flux density). Amhas been widely used and also proved to be effective to measure the confinement in HPW [9

9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

, 17

17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

, 18

18. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19(14), 12925–12936 (2011). [CrossRef] [PubMed]

, 33

33. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008). [CrossRef]

]. In addition, it is inversely proportional to the spontaneous emission rate enhancement [33

33. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008). [CrossRef]

]. This is also a reason why this measurement has been widely used, and it may be useful for our future work on active applications. lmand Amversus the waveguide width w at a fixed h of 70nm are shown in Fig. 4
Fig. 4 The propagation loss lm and the effective mode area Am versus the waveguide width w at a fixed h of 70nm.
. When w goes down from 500nm to 50nm, lm experiences a gradual decrease from 0.00596dB/μm to 0.00179dB/μm whileAm increases from 0.17434μm2 to 0.29207μm2. Therefore, a trade-off between loss and confinement exists here. However, it is notable that when w reaches around 350nm and increases further, Am levels off at 0.175μm2, whereas lm keeps rising continually. Therefore, the point w = 350nm is an optimum value for both low propagation loss and compact confinement. Accordingly, for different applications, we can effectively control the waveguide performance by tuning waveguide dimensions.

3.3 Overlap with the active region

3.4 Loss compensation in MSHPW

In order to provide a merit for the final competetion result, we calculated the critical material gain gc for varying widths. As shown by the blue curve in Fig. 6(c), for the case of introducing a low-index gain material, gc undergoes an increase as wrises, from 33.73cm−1 (w = 50nm) to 59.09 cm−1 (w = 500nm).

4. Conclusion

In conclusion, we have proposed and investigated an active metal strip hybrid plasmonic waveguide. The extremely simple fabrication procedure not only avoids extra losses from fabrication but also widens the scale of gain material selection. The propagation loss and mode confinement of the waveguide are effectively controlled by tuning waveguide dimensions. This is beneficial to meet various demands of applications. In the passive case, an optimum value of the metal strip width is demonstrated to be 350nm for both low-loss propagation and compact confinement. In the active case, gain materials could be introduced either in the low-index gap or the high-index layer for loss compensation. Specifically, the high-index gain material works more effectively than the low-index gain material. For one configuration simulated, the critical material gain for the high-index gain material is as low as 3.8cm−1. Consequently, apart from providing an active waveguide with loss compensation, the results from this investigation also facilitate the designing of other plasmonic devices for active applications such as amplifiers, sources and modulators.

Acknowledgments

This work was partially supported by the Peking University 985 startup fund and the National Natural Science Foundation of China under Grant No. 61036011.

References and links

1.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

2.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

3.

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009). [CrossRef] [PubMed]

4.

Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18(18), 19009–19019 (2010). [CrossRef] [PubMed]

5.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]

6.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005). [CrossRef] [PubMed]

7.

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]

8.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]

9.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

10.

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]

11.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18(20), 21013–21023 (2010). [CrossRef] [PubMed]

12.

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010). [CrossRef] [PubMed]

13.

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010). [CrossRef] [PubMed]

14.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon- plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010). [CrossRef]

15.

J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19(2), 838–847 (2011). [CrossRef] [PubMed]

16.

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011). [CrossRef] [PubMed]

17.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

18.

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19(14), 12925–12936 (2011). [CrossRef] [PubMed]

19.

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36(12), 2312–2314 (2011). [CrossRef] [PubMed]

20.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010). [CrossRef]

21.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef] [PubMed]

22.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]

23.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2 /Si substrates,” Appl. Phys. Lett. 98(7), 071903 (2011). [CrossRef]

24.

M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]

25.

C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, “Er-doped silicon nanowires with 1.54 μm light-emitting and enhanced electrical and field emission properties,” Appl. Phys. Lett. 91(9), 093133 (2007). [CrossRef]

26.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol. 3(3), 174–178 (2008). [CrossRef] [PubMed]

27.

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]

28.

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009). [CrossRef] [PubMed]

29.

S. Massenot, J.-C. Weeber, A. Bouhelier, G. Colas des Francs, J. Grandidier, L. Markey, and A. Dereux, “Differential method for modeling dielectric-loaded surface plasmon polariton waveguides,” Opt. Express 16(22), 17599–17608 (2008). [CrossRef] [PubMed]

30.

J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96(6), 063105 (2010). [CrossRef]

31.

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]

32.

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007). [CrossRef] [PubMed]

33.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008). [CrossRef]

34.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric- loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008). [CrossRef]

35.

S. M. García-Blanco, M. Pollnau, and S. I. Bozhevolnyi, “Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19(25), 25298–25311 (2011). [CrossRef] [PubMed]

36.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 29, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 27, 2012
Published: May 4, 2012

Citation
Linfei Gao, Liangxiao Tang, Feifei Hu, Ruimin Guo, Xingjun Wang, and Zhiping Zhou, "Active metal strip hybrid plasmonic waveguide with low critical material gain," Opt. Express 20, 11487-11495 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11487


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express17(16), 14001–14014 (2009). [CrossRef] [PubMed]
  4. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express18(18), 19009–19019 (2010). [CrossRef] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005). [CrossRef] [PubMed]
  7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  8. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  11. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010). [CrossRef] [PubMed]
  12. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010). [CrossRef] [PubMed]
  13. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  14. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon- plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010). [CrossRef]
  15. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19(2), 838–847 (2011). [CrossRef] [PubMed]
  16. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express19(24), 23671–23682 (2011). [CrossRef] [PubMed]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  18. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  19. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011). [CrossRef] [PubMed]
  20. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron.16(1), 295–306 (2010). [CrossRef]
  21. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010). [CrossRef] [PubMed]
  22. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  23. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2 /Si substrates,” Appl. Phys. Lett.98(7), 071903 (2011). [CrossRef]
  24. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  25. C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, “Er-doped silicon nanowires with 1.54 μm light-emitting and enhanced electrical and field emission properties,” Appl. Phys. Lett.91(9), 093133 (2007). [CrossRef]
  26. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008). [CrossRef] [PubMed]
  27. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  28. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express17(11), 9282–9287 (2009). [CrossRef] [PubMed]
  29. S. Massenot, J.-C. Weeber, A. Bouhelier, G. Colas des Francs, J. Grandidier, L. Markey, and A. Dereux, “Differential method for modeling dielectric-loaded surface plasmon polariton waveguides,” Opt. Express16(22), 17599–17608 (2008). [CrossRef] [PubMed]
  30. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010). [CrossRef]
  31. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  32. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express15(19), 12174–12182 (2007). [CrossRef] [PubMed]
  33. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  34. J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric- loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008). [CrossRef]
  35. S. M. García-Blanco, M. Pollnau, and S. I. Bozhevolnyi, “Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(25), 25298–25311 (2011). [CrossRef] [PubMed]
  36. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited