## First principles study of Bismuth alloying effects in GaAs saturable absorber |

Optics Express, Vol. 20, Issue 10, pp. 11574-11580 (2012)

http://dx.doi.org/10.1364/OE.20.011574

Acrobat PDF (1061 KB)

### Abstract

First principles hybrid functional calculations have been carried out to study electronic properties of GaAs with Bi alloying effects. It is found that the doping of Bi into GaAs reduces the bandgap due to the intraband level repulsions between Bi induced states and host states, and the Bi-related impurity states originate from the hybridization of Bi-6*p* and its nearest As-4*p* orbitals. With the increase of Bi concentration in GaAs, the bandgap decreases monotonously. The calculated optical properties of the undoped and Bi-doped GaAs are similar except the shift toward lower energy of absorption edge and main absorption peaks with Bi doping. These results suggest a promising application of GaBi_{x}As_{1-x} alloy as semiconductor saturable absorber in Q-switched or mode-locked laser.

© 2012 OSA

## 1. Introduction

1. Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: a new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. **60**(4), 419–421 (1992). [CrossRef]

4. J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode pumped Nd:YAG with GaAs output coupler,” Opt. Commun. **165**(4-6), 245–249 (1999). [CrossRef]

5. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. **24**(2), 289–303 (1988). [CrossRef]

## 2. Method of calculations

_{x}As

_{1-x}, in which super-cells of 64 atoms were used. The calculations were performed using the plane-wave projector augmented-wave (PAW) [23

23. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter **50**(24), 17953–17979 (1994). [CrossRef] [PubMed]

24. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B **59**(3), 1758–1775 (1999). [CrossRef]

25. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. **77**(18), 3865–3868 (1996). [CrossRef] [PubMed]

26. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. **118**(18), 8207–8219 (2003). [CrossRef]

27. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. **125**(22), 224106 (2006). [CrossRef] [PubMed]

^{−1}. The outermost

*s*- and

*p*-electrons of the As atom, the outermost

*s*-,

*p*- and

*d*-electrons of the Ga atom, and the Bi atom were treated as valence electrons. The electronic wave functions were expanded into plane-waves with a cutoff energy of 300 eV. Brillouin-zone was sampled by 2 × 2 × 2 Г-centered mesh, and a small Gaussian broadening σ = 0.05 eV was used, such that the peaks of the defect states are resolvable from the valence band continuum, for the calculations of density of states (DOS).

## 3. Bi-related impurity states in GaBi_{x}As_{1-x}

28. D. C. Li, M. Yang, Y. Q. Cai, S. Z. Zhao, and Y. P. Feng, “First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber,” Opt. Express **20**(6), 6258–6266 (2012). [CrossRef] [PubMed]

15. A. Janoti, S. H. We, and S. B. Zhang, “Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs,” Phys. Rev. B **65**(11), 115203 (2002). [CrossRef]

_{x}As

_{1-x}, respectively, and Fig. 3(c) is the LDOS of the Bi atom in GaBi

_{x}As

_{1-x}. It can be seen clearly that the impurity states in Fig. 3(b) (highlighted by red line) and those of Bi atom (the four peaks highlighted in red in Fig. 3(c)) are located at the same positions. Charge transfer between Bi and surrounding Ga atoms induces new electronic states located at 0.33~1.27 eV below the VBM. These impurity states result in the reduction of GaAs bandgap, and also are the transition states to assist photon absorption.

## 4. Bandgap of GaBi_{x}As_{1-x} with different Bi composition

_{x}As

_{1-x}is plotted in Fig. 6 (black line). We found that the dependence of the bandgap (

*E*) of GaBi

_{g}_{x}As

_{1-x}on Bi composition

*x*can be well described by a 3rd-order polynomial,

*x*values ranging from 0 to 0.15 (red curve in Fig. 6). By setting

*E*to 1.17eV (photon energy at 1.06 um) and solving the equation numerically, we can obtain that the photon at the wavelength of 1.06 um can be absorbed in GaBi

_{g}_{x}As

_{1-x}with the Bi concentration of about 8.97%.

## 5. Optical absorption spectra

_{x}As

_{1-x}(x = 1/32), and GaBi

_{x}As

_{1-x}(x = 1/16). The inset of Fig. 7 is the magnified absorption edges that move to the lower energy after Bi doping, which are in good agreement with the above band structure results. It is known that the absorption edge is mainly from the interband transitions between the top of the valence band and the bottom of the conduction band. For the absorption edge of GaAs, it was due to the transitions from As 4

*p*states to Ga 4

*s*states, while for GaBi

_{x}As

_{1-x}the transitions were from As 2

*p*and Bi 6

*p*states to Ga 4

*s*. Beyond the absorption edges, the both doped spectra of GaBi

_{x}As

_{1-x}have two main peaks, which show obvious redshifts compared with the corresponding peaks of GaAs.

## 6. Conclusion

_{x}As

_{1-x}can be realized by tuning Bi the concentration. The incorporation of Bi into GaAs leads to a reduction of bandgap, and the gap decreases with the increase of Bi concentration, due to the Bi induced intraband repulsions. The Bi alloying induced bandgap narrowing effect may make the absorption of light in GaBi

_{x}As

_{1-x}more efficient, suggesting that GaBi

_{x}As

_{1-x}alloy a promising new semiconductor saturable absorber in Q-switched or mode-locked laser in the future.

## Acknowledgments

## References and links

1. | Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: a new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett. |

2. | T. T. Kajava and A. L. Gaeta, “Q-switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett. |

3. | J. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO |

4. | J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode pumped Nd:YAG with GaAs output coupler,” Opt. Commun. |

5. | A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron. |

6. | T. Tiedje, E. C. Young, and A. Mascarenhas, “Growth and properties of the dilute bismide semiconductor GaAs |

7. | A. R. Mohmad, F. Bastiman, C. J. Hunter, J. S. Ng, S. J. Sweeney, and J. P. R. David, “The effect of Bi composition to the optical quality of GaAs |

8. | K. Oe and H. Okamato, “New semiconductor alloy GaAs grown by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. _{x}37(Part 2, No. 11A), L1283–L1285 (1998). [CrossRef] |

9. | K. Oe, “Characteristics of semiconductor alloy GaAs ,” Jpn. J. Appl. Phys. _{x}41(Part 1, No. 5A), 2801–2806 (2002). [CrossRef] |

10. | B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs |

11. | S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs , 0<_{x}x<3.6%,” Appl. Phys. Lett. 82(22), 3874–3876 (2003). [CrossRef] |

12. | S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs ,” Appl. Phys. Lett. _{x}82(14), 2245–2247 (2003). [CrossRef] |

13. | E. C. Young, M. B. Whitwick, T. Tiedje, and D. A. Beaton, “Bismuth incorporation in GaAs grown by molecular beam epitaxy with in-situ light scattering,” Phys. Status Solidi _{x}4(5c), 1707–1710 (2007). [CrossRef] |

14. | K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBi 91(5), 051909–051911 (2007). [CrossRef] |

15. | A. Janoti, S. H. We, and S. B. Zhang, “Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs,” Phys. Rev. B |

16. | Y. Zhang, Z. Mascarenhas, and L. W. Wang, “Similar and dissimilar aspects of III-V semiconductors containing Bi versus N,” Phys. Rev. B |

17. | D. Madouri, A. Boukra, A. Zaoui, and M. Ferhat, “Bismuth alloying in GaAs: a first-principles study,” Comput. Mater. Sci. |

18. | A. Abdiche, H. Abid, R. Riane, and A. Bouaza, “Structural and electronic properties of zinc blend GaAs |

19. | J. Hwang and J. D. Phillips, “Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs,” Phys. Rev. B |

20. | J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys. |

21. | G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. |

22. | G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter |

23. | P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter |

24. | G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B |

25. | J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. |

26. | J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. |

27. | A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys. |

28. | D. C. Li, M. Yang, Y. Q. Cai, S. Z. Zhao, and Y. P. Feng, “First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber,” Opt. Express |

**OCIS Codes**

(140.3540) Lasers and laser optics : Lasers, Q-switched

(160.2220) Materials : Defect-center materials

(160.6000) Materials : Semiconductor materials

(190.4400) Nonlinear optics : Nonlinear optics, materials

**ToC Category:**

Materials

**History**

Original Manuscript: March 28, 2012

Revised Manuscript: April 29, 2012

Manuscript Accepted: April 30, 2012

Published: May 4, 2012

**Citation**

Dechun Li, Ming Yang, Shengzhi Zhao, Yongqing Cai, and Yuanping Feng, "First principles study of Bismuth alloying effects in GaAs saturable absorber," Opt. Express **20**, 11574-11580 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11574

Sort: Year | Journal | Reset

### References

- Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: a new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett.60(4), 419–421 (1992). [CrossRef]
- T. T. Kajava and A. L. Gaeta, “Q-switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett.21(16), 1244–1246 (1996). [CrossRef] [PubMed]
- J. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng.35(5), 299–307 (2001). [CrossRef]
- J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode pumped Nd:YAG with GaAs output coupler,” Opt. Commun.165(4-6), 245–249 (1999). [CrossRef]
- A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron.24(2), 289–303 (1988). [CrossRef]
- T. Tiedje, E. C. Young, and A. Mascarenhas, “Growth and properties of the dilute bismide semiconductor GaAs1−xBix a complementary alloy to the dilute nitrides,” Int. J. Nanotechnol.5, 963–983 (2008). [CrossRef]
- A. R. Mohmad, F. Bastiman, C. J. Hunter, J. S. Ng, S. J. Sweeney, and J. P. R. David, “The effect of Bi composition to the optical quality of GaAs1−xBix,” Appl. Phys. Lett.99(4), 042107–042109 (2011). [CrossRef]
- K. Oe and H. Okamato, “New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 11A), L1283–L1285 (1998). [CrossRef]
- K. Oe, “Characteristics of semiconductor alloy GaAs1-xBix,” Jpn. J. Appl. Phys.41(Part 1, No. 5A), 2801–2806 (2002). [CrossRef]
- B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix.,” Phys. Rev. Lett.97(6), 067205–067208 (2006). [CrossRef] [PubMed]
- S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett.82(22), 3874–3876 (2003). [CrossRef]
- S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1−xBix,” Appl. Phys. Lett.82(14), 2245–2247 (2003). [CrossRef]
- E. C. Young, M. B. Whitwick, T. Tiedje, and D. A. Beaton, “Bismuth incorporation in GaAs1−xBix grown by molecular beam epitaxy with in-situ light scattering,” Phys. Status Solidi4(5c), 1707–1710 (2007). [CrossRef]
- K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1−x,” Appl. Phys. Lett.91(5), 051909–051911 (2007). [CrossRef]
- A. Janoti, S. H. We, and S. B. Zhang, “Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs,” Phys. Rev. B65(11), 115203 (2002). [CrossRef]
- Y. Zhang, Z. Mascarenhas, and L. W. Wang, “Similar and dissimilar aspects of III-V semiconductors containing Bi versus N,” Phys. Rev. B71(15), 155201 (2005). [CrossRef]
- D. Madouri, A. Boukra, A. Zaoui, and M. Ferhat, “Bismuth alloying in GaAs: a first-principles study,” Comput. Mater. Sci.43(4), 818–822 (2008). [CrossRef]
- A. Abdiche, H. Abid, R. Riane, and A. Bouaza, “Structural and electronic properties of zinc blend GaAs1-xBix solid solutions,” Physica B405(9), 2311–2316 (2010). [CrossRef]
- J. Hwang and J. D. Phillips, “Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs,” Phys. Rev. B83(19), 195327 (2011). [CrossRef]
- J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys.123(17), 174101 (2005). [CrossRef] [PubMed]
- G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci.6(1), 15–50 (1996). [CrossRef]
- G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter54(16), 11169–11186 (1996). [CrossRef] [PubMed]
- P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter50(24), 17953–17979 (1994). [CrossRef] [PubMed]
- G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B59(3), 1758–1775 (1999). [CrossRef]
- J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
- J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys.118(18), 8207–8219 (2003). [CrossRef]
- A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys.125(22), 224106 (2006). [CrossRef] [PubMed]
- D. C. Li, M. Yang, Y. Q. Cai, S. Z. Zhao, and Y. P. Feng, “First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber,” Opt. Express20(6), 6258–6266 (2012). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.