OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11830–11837
« Show journal navigation

Room temperature strong coupling effects from single ZnO nanowire microcavity

Ayan Das, Junseok Heo, Adrian Bayraktaroglu, Wei Guo, Tien-Khee Ng, Jamie Phillips, Boon S. Ooi, and Pallab Bhattacharya  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 11830-11837 (2012)
http://dx.doi.org/10.1364/OE.20.011830


View Full Text Article

Acrobat PDF (1785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ~100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 μJ/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by time-resolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density.

© 2012 OSA

The strong coupling regime of light-matter interaction in semiconductor microcavities has been of interest for the relative ease of fabrication of such microcavities and the ability to embed a variety of bulk or quantum confined emitters in them [1

1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]

5

5. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010). [CrossRef]

]. Strong coupling occurs when the emitter-cavity photon coupling rate is larger than the emitter and photon decay rates. The elementary excitations in strongly coupled exciton-photon systems are polaritons, characterized by an anti-crossing in their dispersion characteristics [4

4. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999). [CrossRef]

,5

5. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010). [CrossRef]

]. The energy separation between the lower and upper polariton branches (LPB and UPB) at the anti-crossing is the normal mode cavity splitting, commonly termed the Rabi splitting [6

6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989). [CrossRef] [PubMed]

,7

7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990). [CrossRef] [PubMed]

]. Since the effective mass of exciton-polaritons is four orders of magnitude smaller than the electron mass, the effective temperature for Bose condensation is relatively large. In addition to studying the underlying physics of exciton-polaritons and Bose-Einstein condensation, strong coupling in microcavities enables the realization of polariton lasers in which coherent polariton states generate coherent light by spontaneous radiative recombination, without the requirement of population inversion as in a conventional photon laser.

To observe strong coupling effects [8

8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006). [CrossRef] [PubMed]

16

16. G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008). [CrossRef]

] at temperatures close to or equal to room temperature, materials which provide large coupling strength, and hence large exciton oscillator strength and binding energy, are desired. Therefore, attention has shifted from GaAs-based microcavities to GaN-based [13

13. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]

,14

14. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011). [CrossRef] [PubMed]

,16

16. G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008). [CrossRef]

], and more recently to ZnO-based ones [17

17. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008). [CrossRef]

22

22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011). [CrossRef]

]. ZnO is a wide bandgap semiconductor with an exciton binding energy EB ~60 meV and a Bohr radius aB ~1.4 nm. The critical temperature for Bose condensation, TC is ~560K [23

23. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002). [CrossRef]

]. In comparison, EB is ~7-9 meV and TC is ~100K for GaAs quantum wells. The characteristics of exciton-polaritons and their strong coupling in bulk [17

17. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008). [CrossRef]

19

19. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009). [CrossRef]

], microwire and nanowire [20

20. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006). [CrossRef] [PubMed]

,21

21. L. Sun, H. Dong, W. Xie, Z. An, X. Shen, and Z. Chen, “Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod,” Opt. Express 18(15), 15371–15376 (2010). [CrossRef] [PubMed]

] ZnO-based microcavities at room temperature and polariton lasing in a bulk ZnO microavity at 120K have been reported [22

22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011). [CrossRef]

]. However, room temperature polariton lasing with ZnO, in any form, has not yet been realized.

ZnO nanowires (NW) were grown on (111) silicon substrate by the pulsed laser deposition technique [24

24. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005). [CrossRef]

] The nanowires are typically 1-2μm long and 150-700nm in diameter based on scanning electron microscope (SEM) imaging. An SEM image of the nanowires is shown in Fig. 1(a)
Fig. 1 (a) Scanning electron microscope (SEM) image of ZnO nanowires grown on n-type Si substrate. The wires have an average diameter of ~200-300 nm and a height of ~1.5 - 2.0 μm. The aerial density is ~1x109 cm−2; (b) high resolution transmission electron microscope (HRTEM) image of a ZnO nanowire with the selective area diffraction (SAD) pattern in the inset. The image shows that the nanowire is free of extended defects or stacking faults. The SAD pattern confirms that the nanowires have the wurtzite crystalline structure and grow along the c-axis.
. The nanowire density is estimated to be ~1 × 109 cm−2. Figure 1(b) shows a high resolution transmission electron microscope (TEM) image of a single nanowire, which has good crystalline structure and no dislocations and stacking faults are observed. It is worth mentioning that the contrast present in this image is due to the relatively large diameter (D) of the nanowire, ~200-300 nm. A schematic representation of the mesa-shaped single nanowire-dielectric microcavity is shown in Fig. 2(a)
Fig. 2 (a) schematic of the nanowire-microcavity device with the SEM image of a single nanowire placed on the partial cavity; (b) The calculated electric field intensity distribution of the fundamental x-polarized resonance mode around the nanowire of length 1 μm and diameter 300 nm, embedded in a dielectric cavity. The figure shows the cross-sectional profile of the electrical field intensity in the x-z plane. The boundary of the nanowire in the x-z plane is indicated. Also shown alongside is the refractive index profile of the structure.
. The microcavity was fabricated by depositing the bottom DBR (15 pairs of alternating SiO2 and Si3N4) and 44 nm of the 3λ/2 SiO2 cavity on a Si substrate by plasma enhanced chemical vapor deposition (PECVD). Next, nanowires are dispersed by drop-casting a low density mixture of iso-propyl alcohol and nanowires on the surface. The ZnO nanowire is 200 nm in diameter and hence it extends over 2 antinodes of the 3λ/2 cavity. To isolate a single nanowire, grid masks with alignment marks are prepared for the sample and a single nanowire is located by scanning electron microscopy with respect to the alignment marks. Because of the relatively large NW diameter, the surface was planarized by spinning and baking PMMA. Finally, the rest of the SiO2 cavity and the top DBR are deposited and 10 μm mesas, centered around the single nanowires, are etched down to complete the microcavity. The mesas are atleast 1 mm apart and hence a 100 μm excitation spot only excites a single mesa. Finite difference time domain (FDTD) simulations were performed with the polarization of the excitation source set perpendicular to the c-axis of the nanowire because XA and XB transitions are more dominant over XC as discussed later. For simplicity, theordinary refractive index of ZnO was only taken into account, instead of considering the anisotropy of ZnO. The calculated profile of the dominant cavity mode (shown in Fig. 2(b)) confirms that Ex and Hy field components are the dominant ones. The field along the z-direction is similar to that of a planar microcavity. In addition to the ZnO-dielectric index step, the top and bottom DBRs of the microcavity provide better confinement along the z-direction, so that the light is more strongly confined within the nanowire. The polarization field in the nanowire is small and assumed to be of the same order, ~0.1 MV/cm, as in comparable GaN nanowires. Both of these factors contribute to a large oscillator strength in the ZnO nanowire [14

14. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011). [CrossRef] [PubMed]

]. The estimated quality factor is ~300, which corresponds to a cavity Q factor of a 10 μm long isolated nanowire without anyDBR. Thus the dielectric microcavity provides a relatively high Q for a very short length of the nanowire. It is worthwhile to mention that polariton lasing at 120K in a planar bulk ZnO based microcavity with similar Q-factor has been reported recently [22

22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011). [CrossRef]

].

The optical properties of the nanowires were first studied by photoluminescence (PL) measurements on a nanowire sample performed with excitation from a frequency-tripled mode locked Ti:Sapphire laser (pulse width 130 fs; repetition rate 80 MHz) at 267 nm. The wurtzite crystalline structure gives rise to three free exciton transitions, XA, XB and XC, of which the XA and XB excitons are polarized perpendicular to the c-axis whereas the XC exciton is strongly polarized parallel to the c-axis, as confirmed by interband momentum- matrix calculations [25

25. G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011). [CrossRef] [PubMed]

,26

26. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011). [CrossRef] [PubMed]

]. The PL spectrum at 10K, shown in Fig. 3(a)
Fig. 3 (a) Low temperature photoluminescence spectrum from nanowire ensemble measured perpendicular to the c-axis of the nanowire showing peaks corresponding to free (XA,XB) and donor bound excitons and their phonon replica; (b)temperature dependence of the exciton resonance and its phonon replica; (c) photoluminescence and transmission characteristics measured from an ensemble of ZnO nanowires.
, is characterized by free (XA, XB) and donor-bound exciton transitions and their LO-phonon replicas. The temperature dependence of the free exciton (FXA) peak can be fitted well with the Manoogian and Wooley equation and is shown in Fig. 3(b). At 300K the FXA peak is observed at ~3.312 eV. The transmission characteristics of the nanowires were also measured at room temperature and are shown in Fig. 3(c).The energy position of the absorption edge measured from the transmission characteristics coincides with that of the PL peak, indicating negligible Stokes shift and a low density of defects in the nanowires.

To investigate non-linearity and coherence properties of polariton emission from k|| ~0 states, the microcavity was excited at an angle and the luminescence at zero detection angle was analyzed as a function of pump power. The integrated emission intensity is plotted in Fig. 5(a)
Fig. 5 (a) Integrated photoluminescence intensity measured normal to the device as a function of excitation. The non-linear threshold is at an incident excitation density Eexc = 1.63 μJ/cm2 which corresponds to a LP density of 1.1x1017 cm−2. Inset: PL spectra measured below, at, and above threshold. The spectra reveal progressive linewidth narrowing along with the non-linear increase in the peak intensity; (b) variation of the emission linewidth and peak energy corresponding to a.
as a function of the incident energy density (Eexc) and the corresponding LP density N3D = Eexc/(EpumpD). Here D = 200 nm, Epump = 4.64 eV; it is assumed that 100% of the pump photons is absorbed and all injected hot electrons relax down to the ground state of the lower polariton branch without losses. The estimation gives an upper bound of the LP density14. A distinct non-linearity of the output power is observed at an incident energy density of 1.63 μJ/cm2, where the characteristics change from a sub-linear (with slope 0.7) to a more super-linear increase (with slope of 1.75), which corresponds to a threshold polariton density nth = 1.1 × 1017 cm−3. The latter is an order of magnitude smaller than the Mott density at which the transition from excitons to e-h plasma takes place in ZnO [31

31. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010). [CrossRef]

]. The onset of non-linearity is accompanied by a significant decrease in the emission linewidth (shown in Fig. 5(b)) from 17 meV to ~3.7 meV at the non-linear threshold, which is well below the cavity photon linewidth of ~11 meV estimated from FDTD simulations. It may be noted that we do not observe multimode emission with very small individual linewidths below and above thresholds. Such multimode emission has been attributed to photonic defects leading to localization [13

13. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]

,22

22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011). [CrossRef]

] or simply to the different transverse modes in the nanowire14. It is possible that such modes are present, but are not detected due to lack of resolution and thermal broadening and the measured linewidth of 3.7 meV is an aggregate of several peaks. For larger excitation intensity, the linewidth increases again. This behavior is commonly observed and is believed to be due to decoherence induced by polariton-polariton interactions. The onset of non-linearity in the LP emission is also accompanied by a very small blueshift (<1 meV) in the emission peak energy with increasing excitation intensity. A small blueshift is desirable and confirms that the coherent emission is from the ground state and not from the cavity mode which is at a higher energy by ~50 meV.

To learn more about polariton relaxation and dynamic condensation in k-space as a function of excitation, we have performed two different measurements. In the first we have determined polariton occupancy as a function of k||. To determine occupancy we convert the time-integrated intensity of the angle-resolved LP emission into the number density of LPs by taking into account the k||-dependent density of states and the LP radiative lifetime weightedby the relative Hopfield coefficients [32

32. H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006). [CrossRef] [PubMed]

]. In Fig. 6(a)
Fig. 6 (a) Occupancy of LPB as a function of pump power obtained from angle-resolved photoluminescence measured below, at, and above threshold. The solid lines are theoretical fits based on MB or BE distributions (see text); (b) Time resolved photoluminescence measured normal to the sample (from k|| = 0) below, at, and above threshold with a streak camera having an overall resolution of 5 ps.
, the LP number density per k-state is plotted as a function of the energy difference with Ε(k|| = 0) for different excitation levels. The plots are analyzed by using the Maxwell-Boltzmann (MB) distribution, NMB (k) = N0 exp(-E/kBTLP) or the Bose-Einstein distribution: NBE (k) = 1/[exp(E/kBTLP)(1 + N0−1) – 1], where TLP is the effective polariton temperature, N0 = NLP (k|| = 0), and the LP ground state energy is used as the zero energy reference. Far below threshold (0.36Pth), neither distribution fits the data well; just below threshold (0.82Pth), the data can be fitted with the MB distribution using TLP = 323K; and above threshold, a good fit to the data is obtained with a BE distribution, using TLP = 380 and 415K, for P = 1.3Pth and 1.8Pth, respectively. These values of TLP, significantly larger than 300K, indicate that the polariton condensate at k|| ~0 is not in equilibrium with the lattice, but only in self-equilibrium [33

33. J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008). [CrossRef] [PubMed]

]. Such a dynamic condensation process is sufficient to reach quantum degeneracy, but is not adequate for achieving an equilibrium Bose condensate at k|| ~0 [32

32. H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006). [CrossRef] [PubMed]

,33

33. J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008). [CrossRef] [PubMed]

]. In the second experiment we have performed time-resolved PL (TRPL) measurements with a streak camera to determine the LP relaxation time. The system has an overall temporal resolution of ~5 ps. The transient data for excitation powers below, equal to, and above threshold power are depicted in Fig. 6(b). The rise time, which principally reflects the filling of the exciton reservoir, in all instances is limited by the system resolution. On the other hand, with increase in excitation power the decay times decrease rapidly due to enhanced polariton relaxation from the exciton reservoir to the k|| ~0 states.

Acknowledgments

The work is supported by the National Science Foundation (MRSEC program) under Grant 09-68346 and KAUST under Grant N012509-00.

References and links

1.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]

2.

Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B 52(3), 1800–1805 (1995). [CrossRef]

3.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]

4.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999). [CrossRef]

5.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys. 82(2), 1489–1537 (2010). [CrossRef]

6.

M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett. 63(3), 240–243 (1989). [CrossRef] [PubMed]

7.

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990). [CrossRef] [PubMed]

8.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature 443(7110), 409–414 (2006). [CrossRef] [PubMed]

9.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007). [CrossRef] [PubMed]

10.

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002). [CrossRef] [PubMed]

11.

A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A 53(6), 4250–4253 (1996). [CrossRef] [PubMed]

12.

H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A. 100(26), 15318–15323 (2003). [CrossRef] [PubMed]

13.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]

14.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107(6), 066405 (2011). [CrossRef] [PubMed]

15.

D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett. 100(4), 047401 (2008). [CrossRef] [PubMed]

16.

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett. 93(5), 051102 (2008). [CrossRef]

17.

R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B 93(2-3), 331–337 (2008). [CrossRef]

18.

R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92(1), 011127 (2008). [CrossRef]

19.

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett. 94(6), 061103 (2009). [CrossRef]

20.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett. 97(14), 147401 (2006). [CrossRef] [PubMed]

21.

L. Sun, H. Dong, W. Xie, Z. An, X. Shen, and Z. Chen, “Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod,” Opt. Express 18(15), 15371–15376 (2010). [CrossRef] [PubMed]

22.

T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99(16), 161104 (2011). [CrossRef]

23.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B 65(16), 161205 (2002). [CrossRef]

24.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett. 86(2), 024108 (2005). [CrossRef]

25.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett. 6(1), 501 (2011). [CrossRef] [PubMed]

26.

D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale 3(7), 2783–2800 (2011). [CrossRef] [PubMed]

27.

G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B 77(8), 085310 (2008). [CrossRef]

28.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78(23), 235323 (2008). [CrossRef]

29.

R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93(21), 211105 (2008). [CrossRef]

30.

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81(12), 125305 (2010). [CrossRef]

31.

C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res. 247(6), 1424–1447 (2010). [CrossRef]

32.

H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett. 97(14), 146402 (2006). [CrossRef] [PubMed]

33.

J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett. 101(14), 146404 (2008). [CrossRef] [PubMed]

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 29, 2012
Revised Manuscript: April 30, 2012
Manuscript Accepted: May 5, 2012
Published: May 10, 2012

Citation
Ayan Das, Junseok Heo, Adrian Bayraktaroglu, Wei Guo, Tien-Khee Ng, Jamie Phillips, Boon S. Ooi, and Pallab Bhattacharya, "Room temperature strong coupling effects from single ZnO nanowire microcavity," Opt. Express 20, 11830-11837 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-11830


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  2. Y. Chen, A. Tredicucci, and F. Bassani, “Bulk exciton polaritons in GaAs microcavities,” Phys. Rev. B52(3), 1800–1805 (1995). [CrossRef]
  3. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  4. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys.71(5), 1591–1639 (1999). [CrossRef]
  5. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010). [CrossRef]
  6. M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, “Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity,” Phys. Rev. Lett.63(3), 240–243 (1989). [CrossRef] [PubMed]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett.64(21), 2499–2502 (1990). [CrossRef] [PubMed]
  8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006). [CrossRef] [PubMed]
  9. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  10. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science298(5591), 199–202 (2002). [CrossRef] [PubMed]
  11. A. Imamog¯lu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers,” Phys. Rev. A53(6), 4250–4253 (1996). [CrossRef] [PubMed]
  12. H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Natl. Acad. Sci. U.S.A.100(26), 15318–15323 (2003). [CrossRef] [PubMed]
  13. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  14. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett.107(6), 066405 (2011). [CrossRef] [PubMed]
  15. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton Laser Using Single Micropillar GaAs-GaAlAs Semiconductor Cavities,” Phys. Rev. Lett.100(4), 047401 (2008). [CrossRef] [PubMed]
  16. G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaNmultiple quantum well microcavity,” Appl. Phys. Lett.93(5), 051102 (2008). [CrossRef]
  17. R. Schmidt-Grund, B. Rheinländer, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz, and M. Grundmann, “Exciton–polariton formation at room temperature in a planar ZnO resonator structure,” Appl. Phys. B93(2-3), 331–337 (2008). [CrossRef]
  18. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, and H. Morkoč, “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett.92(1), 011127 (2008). [CrossRef]
  19. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, and C.-C. Lee, “Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature,” Appl. Phys. Lett.94(6), 061103 (2009). [CrossRef]
  20. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a ZnO nanowire cavity,” Phys. Rev. Lett.97(14), 147401 (2006). [CrossRef] [PubMed]
  21. L. Sun, H. Dong, W. Xie, Z. An, X. Shen, and Z. Chen, “Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod,” Opt. Express18(15), 15371–15376 (2010). [CrossRef] [PubMed]
  22. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, and S. Bouchoule, “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett.99(16), 161104 (2011). [CrossRef]
  23. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002). [CrossRef]
  24. L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi, “Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,” Appl. Phys. Lett.86(2), 024108 (2005). [CrossRef]
  25. G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011). [CrossRef] [PubMed]
  26. D. Vanmaekelbergh and L. K. van Vugt, “ZnO nanowire lasers,” Nanoscale3(7), 2783–2800 (2011). [CrossRef] [PubMed]
  27. G. Christmann, R. Butté, E. Feltin, A. Mouti, P. Stadelmann, A. Castiglia, J.-F. Carlin, and N. Grandjean, “Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime,” Phys. Rev. B77(8), 085310 (2008). [CrossRef]
  28. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008). [CrossRef]
  29. R. Johne, D. D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett.93(21), 211105 (2008). [CrossRef]
  30. J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B81(12), 125305 (2010). [CrossRef]
  31. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, “65 years of ZnO research – old and very recent results,” Phys. Status Solidi, B Basic Res.247(6), 1424–1447 (2010). [CrossRef]
  32. H. Deng, D. Press, S. Götzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Quantum degenerate exciton-polaritons in thermal equilibrium,” Phys. Rev. Lett.97(14), 146402 (2006). [CrossRef] [PubMed]
  33. J. Kasprzak, D. D. Solnyshkov, R. André, S. Dang, and G. Malpuech, “Formation of an exciton polariton condensate: thermodynamic versus kinetic Regimes,” Phys. Rev. Lett.101(14), 146404 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited