## Investigation of the effects of nonlinear optical gain and thermal carrier excitation on characteristics of self-assembled quantum-dot lasers |

Optics Express, Vol. 20, Issue 14, pp. 14754-14768 (2012)

http://dx.doi.org/10.1364/OE.20.014754

Acrobat PDF (2599 KB)

### Abstract

Comparing simulation results with experimental findings, it is found that considering nonlinear optical gain is quite essential to accurately obtain dynamic and static characteristics of self-assembled quantum-dot lasers (SAQDLs). In fact, the nonlinear optical gain prevents extreme decline or growth of photon population as the time increases and of output power as the injected current enhances. It also results in multi-mode lasing and increasing the number of lasing modes with elevation of the injected current. In addition, the best performance of SAQDLs, at a certain injected current, depends on homogeneous and inhomogeneous broadening. Thermal carrier excitation results in degradation of light-current characteristics. It also leads to a red shift in dominant lasing modes at low injected currents, the dominant lasing modes move toward higher energies as the current enhances until the most dominant mode becomes the central one.

© 2012 OSA

## 1. Introduction

6. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B **61**(11), 7595–7603 (2000). [CrossRef]

23. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. **34**(16), 1588–1590 (1998). [CrossRef]

24. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. **3**(2), 188–195 (1997). [CrossRef]

24. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. **3**(2), 188–195 (1997). [CrossRef]

## 2. Linear optical gain theory

6. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B **61**(11), 7595–7603 (2000). [CrossRef]

**k.p**interaction between the conduction and valence band. Here,

6. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B **61**(11), 7595–7603 (2000). [CrossRef]

## 3. Derived total optical gain formula

## 4. Rate equations

## 5. Derived PTE response and L-I characteristics solving the MPREs with the linear optical gain

**61**(11), 7595–7603 (2000). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

22. D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. **44**(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.

22. D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. **44**(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.

## 6. Calculated PTE response and L-I characteristics solving the MPREs with the total optical gain

22. D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. **44**(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.

23. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. **34**(16), 1588–1590 (1998). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

## 7. Simulation of L-E characteristics considering and not considering the total optical gain and thermal carrier excitation rate at the MPREs

**61**(11), 7595–7603 (2000). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

**61**(11), 7595–7603 (2000). [CrossRef]

## 8. Conclusion

## References and links

1. | T. D. Steiner, “ |

2. | D. Bimberg, M. Grundmann, and N. N. Ledentov, “ |

3. | M. Sugawara, “Effect of carrier dynamic on quantum-dot laser performance and possibility of bi-exciton lasing,” Proc. SPIE |

4. | M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B |

5. | M. Sugawara, “ |

6. | M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B |

7. | M. Sugawara, “ |

8. | M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. |

9. | C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:. [CrossRef] |

10. | C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. |

11. | L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. |

12. | M. Grundmann, |

13. | A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron |

14. | O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE J. Trans. Electron Devices |

15. | A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. |

16. | A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. |

17. | F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55- |

18. | D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron. |

19. | L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. |

20. | D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J. |

21. | A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. |

22. | D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. |

23. | K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. |

24. | H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. |

**OCIS Codes**

(140.0140) Lasers and laser optics : Lasers and laser optics

(140.5960) Lasers and laser optics : Semiconductor lasers

**ToC Category:**

Lasers and Laser Optics

**History**

Original Manuscript: August 4, 2011

Revised Manuscript: November 2, 2011

Manuscript Accepted: December 15, 2011

Published: June 18, 2012

**Citation**

Davoud Ghodsi Nahri, "Investigation of the effects of nonlinear optical gain and thermal carrier excitation on characteristics of self-assembled quantum-dot lasers," Opt. Express **20**, 14754-14768 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-14754

Sort: Year | Journal | Reset

### References

- T. D. Steiner, “Semiconductor nano structures for optoelectronic applications,” (Artech House, 2004).
- D. Bimberg, M. Grundmann, and N. N. Ledentov, “Quantum Dot Heterostructures,” (Wiley, 1999).
- M. Sugawara, “Effect of carrier dynamic on quantum-dot laser performance and possibility of bi-exciton lasing,” Proc. SPIE3283, 88–99 (1998). [CrossRef]
- M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B97, 043523 (2005).
- M. Sugawara, “Self -Assembled InGaAs/GaAs Quantum Dots,” (Academic Press, 60, 1999), Chap. 6.
- M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B61(11), 7595–7603 (2000). [CrossRef]
- M. Sugawara, “Self -Assembled InGaAs/GaAs Quantum Dots,” (Academic Press, 60, 1999), Chap. 1.
- M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett.71(19), 2791 (1997). [CrossRef]
- C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:. [CrossRef]
- C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett.91(6), 061117 (2007). [CrossRef]
- L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett.73(7), 969–971 (1998). [CrossRef]
- M. Grundmann, Nano-Optoelectronics, Concepts, Physics and Devices (Springer, 2002).
- A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron9(5), 1308–1314 (2003). [CrossRef]
- O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE J. Trans. Electron Devices50(7), 1575–1581 (2003). [CrossRef]
- A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys.98(10), 104506 (2005). [CrossRef]
- A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron.43(4), 287–294 (2007). [CrossRef]
- F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron.45(7), 872–878 (2009). [CrossRef]
- D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron.46(11), 1611–1618 (2010). [CrossRef]
- L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun.283(24), 5092–5098 (2010). [CrossRef]
- D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J.11(1), 12–17 (2010).
- A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J.11(1), 6–12 (2010).
- D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol.44(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.
- K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett.34(16), 1588–1590 (1998). [CrossRef]
- H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron.3(2), 188–195 (1997). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

OSA is a member of CrossRef.