OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15540–15546
« Show journal navigation

Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser

Dorian Sanchez, Laurent Cerutti, and Eric Tournié  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15540-15546 (2012)
http://dx.doi.org/10.1364/OE.20.015540


View Full Text Article

Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication and performances of an electrically-pumped GaSb monolithic VCSEL, i.e. ,a VCSEL with two epitaxial Bragg mirrors. Selective lateral etching of a tunnel junction is used to provide current and optical confinement. Laser devices with a 6 µm tunnel-junction effective diameter operate at 2.3 µm in CW up to 70 °C, with a threshold current as low as 1.9 mA at 30 °C. The laser emission is single mode with a SMSR near 25 dB and mode-hop-free electro-thermal tunability around 14 nm. This is the first demonstration of a single-mode electrically-pumped monolithic GaSb-based VCSEL.

© 2012 OSA

1. Introduction

The mid-infrared (MIR) wavelength (2 – 5 µm) range is rich of interest due to numerous absorption lines of pollutants such as, e.g.,CO2, CH4, NH3,which is very useful for trace gas sensing with Tunable Diode Laser Absorption Spectroscopy (TDLAS) [1

1. A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002). [CrossRef] [PubMed]

]. Wavelengths around 2.3 µm are particularly attractive thanks to strong absorption of alkanes, including methane, and weak absorption of water vapor in this spectral range. GaSb-based materials allow covering this wavelength range by exploiting the efficient GaInAsSb/AlGaAsSb type-I quantum well (QW) system.

The TDLAS technique requires single-mode laser emission and large electro-thermal tunability without mode hops. Distributed feed-back (DFB) diode lasers are the most widespread technology to get such performances but they rely on complex technology [2

2. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006). [CrossRef] [PubMed]

4

4. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012). [CrossRef]

]. Vertical-Cavity Surface Emitting Lasers (VCSELs) fulfill all the requirements and, moreover, exhibit low laser thresholds. MIR GaSb-VCSELs operating in continuous wave (CW) at room temperature (RT) were first optically pumped devices [5

5. L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004). [CrossRef]

7

7. N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006). [CrossRef]

]. Indeed, unlike GaAs or InP based materials, the realization of electro-optical confinement with oxidation of an Al-rich layer or ion implantation [8

8. H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)

] is not possible with GaSb-based materials [9

9. K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004). [CrossRef]

].

Moreover, p-type AlAsSb/GaSb Distributed Bragg Reflectors (DBRs) exhibit poor conductivity and high free-carrier absorption losses [10

10. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007). [CrossRef]

] which limits electrically-pumped p-n junction VCSELs to pulsed operation at RT [11

11. A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998). [CrossRef]

]. Insertion of a low-resistivity type-III InAs/GaSb tunnel junction (TJ) has been proposed to overcome this issue [12

12. O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004). [CrossRef]

15

15. K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011). [CrossRef]

]. In the last few years, hybrid semiconductor/dielectric structures using buried tunnel junction (BTJ) processing allowed demonstrating single mode operation in CW up to 75°C around 2.3 µm [16

16. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

, 17

17. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009). [CrossRef]

] and up to 50°C around 2.6 µm [18

18. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009). [CrossRef]

]. Output powers around 300 µW and wavelength tunability around 10 nm have been achieved at 2.3 µm at RT [16

16. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

18

18. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009). [CrossRef]

]. However, processing of these devices is complex and relies on epitaxial re-growth where high temperature is required for oxide desorption. This raises the TJ resistivity [12

12. O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004). [CrossRef]

] and blue-shifts the active-zone emission [19

19. O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005). [CrossRef]

].

A monolithic approach has also been developed using two n-type DBRs and a TJ which allowed fabricating VCSELs operating at RT up to 2.3 µmin CW mode [20

20. A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008). [CrossRef]

] and up to 2.63 µm in pulsed mode [21

21. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009). [CrossRef]

]. However, this technology was based on large-area etched mesas and lacked efficient electro-optical confinement, leading to multimode emission and high threshold currents. Recently, we have shown the possibility of selective lateral etching of the InAs/GaSb TJ while keeping a low TJ resistivity around 2 x10−5 Ω.cm−2 [22

22. D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.

]. Such a technique has previously been proved efficient to realize single-mode InP VCSELs [23

23. D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005). [CrossRef]

, 24

24. D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006). [CrossRef]

] operating in CW up to 70°C in the 1.3-1.6 µm wavelength range.

In this letter, we report the technology and characterizations of a single-mode monolithic GaSb-VCSEL emitting CW at 2.3 µm with a current aperture formed by selective lateral wet-etching of the TJ.

2. VCSEL structure and fabrication

The device structure is illustrated in Fig. 1
Fig. 1 Schematic diagram of the processed structure, with Φ1 the external diameter of the etched mesa,Φ2 the internal diameter of the output VCSEL and Φ3the effective diameter of the TJ.
. The epitaxial stack is grown in a single run by solid source molecular beam epitaxy on an (001) n-doped GaSb substrate. The 3λ/4 cavity contains five 10-nm wide Ga0.68In0.32As0.08Sb0.92QWs embedded in 15-nm-thick Al0.35Ga0.65As0.03Sb0.97 barrier layers. The QWs are 1.5% compressively strained and have been designed for an emission wavelength of 2.3 µm. The TJ is positioned at the second standing wave null-position above the QWs in order to reduce free-carrier absorption losses. The TJ is realized with a 1019cm−3 n++-InAs/1019 cm−3 p++-GaSb heterostructure. Both InAs and GaSb layers are 20nm thick. Amphoteric Si is used as dopant in the TJ for both p-type GaSb and n-type InAs layers.

This ensures high doping levels in both layers and prevents dopant interdiffusion at the interface [13

13. O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006). [CrossRef]

, 15

15. K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011). [CrossRef]

]. The active region is embedded between two Te-doped lattice-matched AlAsSb/GaSb DBRs made of 23 and 21 quarter-wavelength pairs for the bottom and the top mirror, respectively. Both AlAsSb and GaSb layer in the DBRs are Te-doped with a concentration of 1018 cm−3 in order to improve their electrical conduction [10

10. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007). [CrossRef]

].

Device fabrication involved wet etching of the top DBR with aCrO3:HF:H2O solution. The InAs layer of the TJ plays the role of an etch-stop layer. Then, InAs is selectively etched with a solution of citric acid and hydrogen peroxide to form the thin air-gap aperture. The process set-up for the lateral etching of the TJ is described in ref [22

22. D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.

]. Figure 2
Fig. 2 Cross-section SEM picture of selectively etched InAs/GaSb tunnel-junction in a monolithic GaSb-VCSEL.
presents a cross-section scanning electron microscope (SEM) picture of a selectively etched TJ in a monolithic VCSEL structure. Deep lateral etching can be achieved.

Devices with 35 µm pillar diameter (Φ1) and a top aperture of 25 µm (Φ2) have been fabricated. Using the method described above to form the aperture, we realized VCSELs with a 6µm TJ effective diameter (Φ3). After the lateral etching step of the TJ the devices were passivated with the AZ4533photoresistand annealed in an oven to form a solid passivation layer. Before metallization, the samples were etched with HCl (1:2) in order to remove native oxide. The top ring contact is made with sputtered Pd/Au/Ge/Ni. The substrate was thinned down to 300 µm and Au/Ge/Ni back contact was deposited on the GaSb substrate. The whole sample was then annealed around 200°C to form top and bottom ohmic contacts [25

25. J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001). [CrossRef]

].

3. Results and discussions

Typical light-current (L-I) and voltage-current (V-I) characteristics obtained in CW at various temperatures are reported in Fig. 3
Fig. 3 L-I and V-I characteristics (same color code) taken at various temperatures in CW for a monolithic GaSb-VCSEL with a 6 µm TJ effective diameter.
. CW operation is obtained up to a heat-sink temperature as high as 70°C.

The maximum output power is around 100 µW. This rather low value can partly be explained by the very high reflectivity of the top DBR. Indeed, the calculated reflectivity is around 99.8%, taking into account 7 cm−1 optical absorption losses in n-type DBR [11

11. A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998). [CrossRef]

].The I-V characteristic at 20°C exhibits a turn-on voltage of 3V. This value which is twice the value previously obtained with large-area monolithic VCSELs can be attributed to the narrow aperture of the TJ combined with the total thickness of the structure (~16 µm). Such an increase of the turn-on voltage has already been observed with InP-based apertured TJ VCSEL [27

27. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998). [CrossRef]

]. It also limits the output power as we discuss later in the paper.

Figure 5
Fig. 5 Laser emission spectra taken at 20 °C under different CW drive currents for a monolithic GaSb-VCSEL with a 6 µm TJ effective diameter.
presents CW laser emission spectra (measured with a FTIR) taken at 20°C under various drive currents. The laser exhibits single-mode emission with a Side Mode Suppression Ratio (SMSR) around 25 dB in the whole range of drive current. Single-mode emission is also achieved in the whole temperature range up to 70 °C (Fig. 5). Single-mode emission arises from narrow TJ effective diameters [29

29. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

]. VCSELs with TJ effective-diameter larger than 8 µm exhibit multimode emission, as also reported in Ref [29

29. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

].

Figure 6
Fig. 6 Wavelength tunability of the VCSEL with 6 µm TJ effective diameter: (a) evolution of the emitted wavelength with drive current at different temperatures (20, 30, 40, 50 and 60 °C); (b) evolution of the emission wavelength with heat-sink temperature at different drive currents (3, 4 and 5 mA).
reports the wavelength tunability of the VCSEL as a function of the drive current and heat-sink temperature. The wavelength shifts at a rate of 2.7 nm/mA at constant heat-sink temperature (Fig. 6(a)) and at a rate of 0.21 nm/K at constant drive current (Fig. 6(b)).These electro-thermal effects allow shifting the laser emission continuously in a wavelength range as large as 14 nm without mode hop. This wavelength agility demonstrates that such devices are well suited to scan several gas absorption lines as required for TDLAS applications.

To estimate the thermal resistance of the device, we calculated a power tenability of 0.47 nm/mW, taking into account the applied voltage. The thermal resistance for a constant temperature and an electrical power is given by the following relation [8

8. H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)

]: Rth=Δλ/ΔΡΔλ/ΔΤ

We deduced a thermal resistance of 2240 K/W, which is comparable to the value obtained for the same diameter with buried-TJ VCSELs emitting in the same wavelength range [17

17. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009). [CrossRef]

]. This explains also that we observe similar wavelength tunability.

Based on this calculated value, we estimate the temperature rise in the active region of the device to be around 20 K at threshold and 65 K at the thermal rollover which appears only 4 mA above threshold (Fig. 3). The rapid occurrence of the thermal rollover arises from the high voltage (~4 V) at laser threshold and high series resistance of DBRs. This limits the maximum operating temperature and, together with the high top-DBR reflectivity, the output power which is a factor of ~4 lower than that of BTJ VCSELs at 2.3 µm and 20 °C [16

16. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

18

18. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009). [CrossRef]

]. To increase the output power it will be necessary to reduce both the turn-on voltage and serial resistance of the devices. Several ways can be explored, such as improving the InAs/GaSb TJ resistivity [15

15. K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011). [CrossRef]

] or developing intra-cavity contacts in order to avoid driving the current through the DBRs.

3. Conclusion

In this paper, we have reported the fabrication and the characterization of a monolithic GaSb VCSEL emitting at 2.3 µm with selective lateral etching of the TJ. This process allows simultaneous electrical and optical confinement. A small TJ effective diameter of 6 µm allowing low current threshold has led to CW operation up to 70°C. Identified limitations of this device are high turn-on voltage and serial resistance which reduce the operating current range and the output optical power. Improvement of the TJ and development of intracavity contact should allow reaching higher output powers. Single mode operation in the whole range of current and temperature is demonstrated for the first time with electrically-pumped monolithic GaSb VCSELs. This work shows that this technology is viable for developing mid-IR photonic devices and systems.

References and links

1.

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002). [CrossRef] [PubMed]

2.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006). [CrossRef] [PubMed]

3.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009). [CrossRef]

4.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012). [CrossRef]

5.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004). [CrossRef]

6.

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005). [CrossRef]

7.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006). [CrossRef]

8.

H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)

9.

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004). [CrossRef]

10.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007). [CrossRef]

11.

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998). [CrossRef]

12.

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004). [CrossRef]

13.

O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006). [CrossRef]

14.

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

15.

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011). [CrossRef]

16.

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

17.

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009). [CrossRef]

18.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009). [CrossRef]

19.

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005). [CrossRef]

20.

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008). [CrossRef]

21.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009). [CrossRef]

22.

D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.

23.

D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005). [CrossRef]

24.

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006). [CrossRef]

25.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001). [CrossRef]

26.

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009). [CrossRef]

27.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998). [CrossRef]

28.

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009). [CrossRef]

29.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

OCIS Codes
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 30, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 8, 2012
Published: June 26, 2012

Citation
Dorian Sanchez, Laurent Cerutti, and Eric Tournié, "Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser," Opt. Express 20, 15540-15546 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(11), 2405–2412 (2002). [CrossRef] [PubMed]
  2. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt.45(20), 4957–4965 (2006). [CrossRef] [PubMed]
  3. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett.21(20), 1532–1534 (2009). [CrossRef]
  4. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett.100(3), 031107 (2012). [CrossRef]
  5. L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett.40, 869–871 (2004). [CrossRef]
  6. A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett.17(10), 2020–2022 (2005). [CrossRef]
  7. N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett.18(9), 1070–1072 (2006). [CrossRef]
  8. H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)
  9. K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys.95(9), 5131–5136 (2004). [CrossRef]
  10. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol.22(10), 1140–1144 (2007). [CrossRef]
  11. A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett.34(3), 281–282 (1998). [CrossRef]
  12. O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett.85(12), 2388–2389 (2004). [CrossRef]
  13. O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett.42(7), 419–420 (2006). [CrossRef]
  14. A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron.14, 1014–1021 (2008).
  15. K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol.26(7), 075021 (2011). [CrossRef]
  16. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron.15, 933–940 (2009).
  17. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys.11(12), 125014 (2009). [CrossRef]
  18. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett.95(13), 131120 (2009). [CrossRef]
  19. O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett.86(15), 151120 (2005). [CrossRef]
  20. A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett.20(20), 1745–1747 (2008). [CrossRef]
  21. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett.45(5), 265–266 (2009). [CrossRef]
  22. D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.
  23. D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett.17(10), 2017–2019 (2005). [CrossRef]
  24. D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron.42(5), 494–499 (2006). [CrossRef]
  25. J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth228, 625–629 (2001). [CrossRef]
  26. Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett.45(2), 105–106 (2009). [CrossRef]
  27. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett.72(15), 1814–1816 (1998). [CrossRef]
  28. A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron.3(6), 305–309 (2009). [CrossRef]
  29. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron.17, 1576–1583 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited