## Luminorefrigeration: vibrational cooling of NaCs |

Optics Express, Vol. 20, Issue 14, pp. 16083-16091 (2012)

http://dx.doi.org/10.1364/OE.20.016083

Acrobat PDF (1054 KB)

### Abstract

We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X^{1}Σ^{+}(*v* ≥ 4) into the vibrational ground state X^{1}Σ^{+}(*v*=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X^{1}Σ^{+}(*v*=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, J* _{initial}*=0–2 is only moderately affected resulting in J

*=0–4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.*

_{final}© 2012 OSA

## 1. Introduction

*Lumino-frigoriques*is a term originally used by A. Kastler to describe optical pumping (OP) of sodium atoms between hyperfine states to accumulate population in a dark state [1

1. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium **11**, 255–265 (1950). [CrossRef]

2. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. **61**, 826–829 (1988). [CrossRef] [PubMed]

3. W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. **70**, 721–741 (1998). [CrossRef]

_{2}by pumping vibrational levels with a femtosecond laser [4

4. M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science **321**(5886), 232–234 (2008). [CrossRef] [PubMed]

5. D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A **80**, 051401 (2009). [CrossRef]

6. P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. **6**, 271–274 (2010). [CrossRef]

7. T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. **6**, 275–278 (2010). [CrossRef]

8. H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. **98**, 060404 (2007). [CrossRef] [PubMed]

9. G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. **100**, 050402 (2008). [CrossRef] [PubMed]

10. L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A **82**, 062323 (2010). [CrossRef]

11. S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. **142**, 351–359 (2009). [CrossRef]

12. J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. **94**, 203001 (2005). [CrossRef] [PubMed]

^{1}Σ

^{+}(

*v*=0) with an experimentally unconfirmed rotational distribution. Then, there is the efficient but technically challenging demonstration of magneto-association and coherent transfer of KRb [13

13. K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science **322**, 231–235 (2008). [CrossRef] [PubMed]

14. J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. **101**(13), 133004 (2008). [CrossRef] [PubMed]

15. P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X^{1}Σ^{+}(*v*″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A **84**, 061401 (2011). [CrossRef]

^{1}Σ

^{+}(

*v*=0, J=0–4). We describe a series of experiments that explore the pumping dynamics and discuss the applicability of this approach to other bialkali systems.

## 2. Experimental setup: molecule formation

20. A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 6^{2}P_{3/2} asymptote,” Phys. Chem. Chem. Phys. **13**, 18887–18892 (2011). [CrossRef] [PubMed]

^{2}S

_{1/2}→ 6

^{2}P

_{3/2}transition, and we lock the PA laser to within a few MHz. This channel has a high formation rate, estimated to be ∼10

^{7}molecules/s determined from spectroscopic results [21

21. P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A **82**, 040501 (2010). [CrossRef]

22. R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007). [PubMed]

*μ*K. To achieve vibrational cooling, the photoassociated NaCs sample is continuously exposed to OP light, driving the rovibrational distribution of molecules through the A

^{1}Σ

^{+}and b

^{3}Π electronic states (A–b complex). We then probe the populated vibrational states of the NaCs sample using Resonance Enhanced Multi-photon Ionization (REMPI) where the neutral molecules are ionized and subsequently detected by a channel electron multiplier (CEM) using time of flight mass spectroscopy, and these experiments are run at a 10 Hz repetition rate. Other spectroscopic techniques are employed to unambiguously determine the rovibrational state populations, such as pulsed depletion spectroscopy (PDS) [21

21. P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A **82**, 040501 (2010). [CrossRef]

23. D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A **75**(3), 032511 (2007). [CrossRef]

^{1}Σ

^{+}(

*v*=4–6,8,9,11,13,15,17,19,21,23,25–27,31), determined using PDS [21

21. P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A **82**, 040501 (2010). [CrossRef]

24. M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest ^{1,3}Σ^{+} states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys. **122**, 204302 (2005). [CrossRef] [PubMed]

22. R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007). [PubMed]

## 3. Experimental setup: molecule manipulation

18. J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the *A*^{1}Σ^{+}– *b*^{3}Π complex in a NaCs dimer,” Phys. Rev. A **79**(1), 012508 (2009). [CrossRef]

^{1}Σ

^{+}(

*v*=0) → A–b complex (N=1), N=1 being the lowest vibrational level of the Ω=0 component of the b

^{3}Π, and consequently the lowest vibrational level in the excited state manifold. The A–b complex is a heavily mixed system of electronic states, therefore the effective vibrational levels are perturbed and numbered using index N. For this spectral distribution, the OP light would not be energetic enough to drive population from X

^{1}Σ

^{+}(

*v*=0) forming a dark state, yet it will pump population out of X

^{1}Σ

^{+}(

*v*≥1).

^{1}Σ

^{+}→ Ω=0 components of the A–b complex to provide insight into the expected OP behavior. Note, there are 87 singlet ground state vibrational levels; however, transition dipole moments were available only for X

^{1}Σ

^{+}(

*v*=0–65) from [25]. We choose a 985nm spectral component based on the known initial vibrational distribution, and this wavelength corresponds to the strongest calculated transition moments from deeply bound singlet ground states. We note that the 985nm component addresses population throughout the singlet and triplet ground states. However, in order to more efficiently drive the higher lying vibrational levels, we include a 1206nm spectral component. This wavelength selection is a compromise based on the availability of laser diodes and wavelengths closer to 1255nm would access more efficient pumping pathways. We calculate transition rates based on the readily available diode lasers assuming a flat-top spectral intensity profile spanning 979–991nm at 300 mW and 1203–1209nm at 1.5 W focused to 1mm in diameter. We conclude that a sufficient range of singlet ground state vibrational levels may be coupled via optical pumping by this experimentally feasible laser system. Of course, increasing the spectral width would couple even more levels thereby increasing the transfer efficiency to X

^{1}Σ

^{+}(

*v*=0).

5. D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A **80**, 051401 (2009). [CrossRef]

^{1}Σ

^{+}(

*v*=0) → A–b complex (N=1). The OP light is to the red of this transition satisfying the requirement for the formation of a dark state.

## 4. Results and discussion

^{1}Σ

^{+}(

*v*=0), determined by comparing REMPI spectra [15

15. P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X^{1}Σ^{+}(*v*″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A **84**, 061401 (2011). [CrossRef]

**82**, 040501 (2010). [CrossRef]

^{1}Σ

^{+}(

*v*=4–6,19). The REMPI range here is selected because it contains one of the detection lines for the vibrational ground state. The state assignments in Fig. 3 are as described in [21

**82**, 040501 (2010). [CrossRef]

18. J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the *A*^{1}Σ^{+}– *b*^{3}Π complex in a NaCs dimer,” Phys. Rev. A **79**(1), 012508 (2009). [CrossRef]

^{1}Σ

^{+}(

*v*=0–2), are populated while other vibrational levels are completely or mostly depopulated. From prior work [21

**82**, 040501 (2010). [CrossRef]

^{1}Σ

^{+}(

*v*=0) REMPI detection line exists in the 535–545nm range and our OP results were confirmed using such a 535–545nm REMPI scan.

*v*=0). The 1206nm spectral component alone does not significantly populate X

^{1}Σ

^{+}(

*v*=0); however, it does increase population in other deeply bound singlet ground states. The 985nm spectral component saturates population driven into X

^{1}Σ

^{+}(

*v*=0) as a function of OP intensity, and when the two spectral components are combined, the transfer rate to X

^{1}Σ

^{+}(

*v*=0) is nearly doubled. This increase arises from the 1206nm spectral component transferring population into vibrational states that are accessible with the 985nm component and driven to X

^{1}Σ

^{+}(

*v*=0). These results confirm the presence of higher lying vibrational levels in the initial distribution.

^{1}Σ

^{+}(

*v*=0) detection channel per REMPI pulse. At this rate, however, we approach saturation of the standard CEM, meaning that the rate of ion bombardment is nearing the max output pulse rate, and actual production rates may be higher than those detected. A conservative estimate for the transfer rate into X

^{1}Σ

^{+}(

*v*=0) is ∼1×10

^{5}molecules/s from the initial rovibrational distribution created by the 32 GHz PA resonance. This is estimated by considering the detected ions per REMPI pulse, the detector efficiency, a geometric factor describing the ratio of detected molecules to those outside of the ionizer pulse region, and the 10 Hz experimental repetition rate. We also find accumulation in X

^{1}Σ

^{+}(

*v*=1, 2) with 45 ions per REMPI pulse, consistent with the relative spectral intensities of the diodes illustrated in Fig. 2 and the calculated transition rates.

^{1}Σ

^{+}(

*v*=1,2,8,13,15,19), and we see no evidence of a true dark state other than X

^{1}Σ

^{+}(

*v*=0) when the two spectral component OP light is used. We observe depletion in the triplet ground state for

*a*

^{3}Σ

^{+}(

*v*=12), verifying that here the triplet ground state is not a dark state. The formation and assignment of this vibrational state is discussed in [20

20. A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 6^{2}P_{3/2} asymptote,” Phys. Chem. Chem. Phys. **13**, 18887–18892 (2011). [CrossRef] [PubMed]

^{3}Π.

^{1}Σ

^{+}(

*v*=4) → A–b complex (N=70) transition, we find that PA through J=1 in the excited state, populates J=0,1,2 in the singlet ground state as shown by the solid line in Fig. 4(a). The assignments were made by comparing line positions to calculated values from [25]. Selecting the PA state is a crucial step when constructing the initial distribution and higher rotational states may be populated depending on the PA channel selected. The dotted line in Fig. 4(a) illustrates J=1,3 being populated via PA through J=2 in the excited state.

^{1}Σ

^{+}(

*v*=0). Figure 4(b) illustrates the rotational states that are populated within X

^{1}Σ

^{+}(

*v*=0) by driving transitions between X

^{1}Σ

^{+}(

*v*=0) → A–b complex(N=77). From this depletion scan, we determine that the final rotational distribution populates J

*=0–4 and a significant fraction is in X*

_{final}^{1}Σ

^{+}(

*v*=0, J=2).

^{1}Σ

^{+}→ A

^{1}Σ

^{+}rotational transitions are used in a monte carlo simulation to model the cw depletion spectroscopy results. We use an initial rotational state distribution of J

*=0–2 and alter the rotational state weighted by the HL factors for two thousand molecules and a specified number of cycles. Each cycle consists of the excitation and decay transitions. This model predicts the final population distribution for 1–6 cycles is centered at J*

_{initial}*=2 with population ranging from J*

_{final}*=0–6 as depicted in Fig. 5. When modeling 3–8 cycles, we find the rotational population disperses over ΔJ*

_{final}*=0–10 with a majority in states J*

_{final}*=2,4,6 which is contrary to the observed spectrum. Therefore, we infer the molecules do not undergo many transitions before populating X*

_{final}^{1}Σ

^{+}(

*v*=0, J=2) due to the FC overlap of the ground and excited states.

^{1}Σ

^{+}(

*v*=4–65) is driven to X

^{1}Σ

^{+}(

*v*=0) in 6 cycles (12 transitions) or less. These results are consistent with the observed rotational state dispersion, as well as with our estimated formation rates, highlighting the optical pumping efficiency obtained using the A–b complex.

## 5. Applications to other heteronuclear species

28. R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. **128**, 244316 (2008). [CrossRef] [PubMed]

^{1}Σ

^{+}and b

^{3}Π states [29

29. A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A^{1}Σ^{+} – b^{3}Π complex of KCs,” Phys. Rev. A **81**, 042509 (2010). [CrossRef]

22. R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007). [PubMed]

30. J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. **256**, 57–67 (2009). [CrossRef]

## 6. Conclusion

^{1}Σ

^{+}–b

^{3}Π complex in a series of absorption and spontaneous emission cycles and population accumulates in X

^{1}Σ

^{+}(

*v*=0) at an estimated rate of ∼1×10

^{5}molecules/s, populating X

^{1}Σ

^{+}(

*v*=0, J=0–4). A cw approach has low risk of multiphoton excitation and minimal rotational state dispersion and the efficiency is limited only by the bandwidth of the OP laser system.

^{1}Σ

^{+}(

*v*=0, J=0) via rotational optical pumping. We are currently exploring the unique properties of the lowest vibrational levels in the A

^{1}Σ

^{+}–b

^{3}Π complex which will facilitate the transfer of X

^{1}Σ

^{+}(

*v*=0, J=2) → X

^{1}Σ

^{+}(

*v*=0, J=0).

## Acknowledgments

## References and links

1. | A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium |

2. | A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. |

3. | W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. |

4. | M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science |

5. | D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A |

6. | P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. |

7. | T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. |

8. | H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. |

9. | G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. |

10. | L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A |

11. | S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. |

12. | J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. |

13. | K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science |

14. | J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. |

15. | P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X |

16. | O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X |

17. | A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B |

18. | J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the |

19. | A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c |

20. | A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 6 |

21. | P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A |

22. | R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007). [PubMed] |

23. | D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A |

24. | M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest |

25. | Private Communication with A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber. |

26. | Purchased from Intense Laser Co. |

27. | Purchased from Thorlabs. |

28. | R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. |

29. | A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A |

30. | J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. |

**OCIS Codes**

(020.4180) Atomic and molecular physics : Multiphoton processes

(020.3320) Atomic and molecular physics : Laser cooling

**ToC Category:**

Atomic and Molecular Physics

**History**

Original Manuscript: May 23, 2012

Revised Manuscript: June 22, 2012

Manuscript Accepted: June 23, 2012

Published: June 29, 2012

**Citation**

A. Wakim, P. Zabawa, M. Haruza, and N. P. Bigelow, "Luminorefrigeration: vibrational cooling of NaCs," Opt. Express **20**, 16083-16091 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-16083

Sort: Year | Journal | Reset

### References

- A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium11, 255–265 (1950). [CrossRef]
- A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett.61, 826–829 (1988). [CrossRef] [PubMed]
- W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys.70, 721–741 (1998). [CrossRef]
- M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science321(5886), 232–234 (2008). [CrossRef] [PubMed]
- D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A80, 051401 (2009). [CrossRef]
- P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys.6, 271–274 (2010). [CrossRef]
- T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys.6, 275–278 (2010). [CrossRef]
- H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett.98, 060404 (2007). [CrossRef] [PubMed]
- G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett.100, 050402 (2008). [CrossRef] [PubMed]
- L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A82, 062323 (2010). [CrossRef]
- S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss.142, 351–359 (2009). [CrossRef]
- J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett.94, 203001 (2005). [CrossRef] [PubMed]
- K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science322, 231–235 (2008). [CrossRef] [PubMed]
- J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett.101(13), 133004 (2008). [CrossRef] [PubMed]
- P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A84, 061401 (2011). [CrossRef]
- O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B39, S929–S943 (2006). [CrossRef]
- A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett.497, 22–25 (2010). [CrossRef]
- J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A79(1), 012508 (2009). [CrossRef]
- A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A84, 012507 (2011). [CrossRef]
- A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys.13, 18887–18892 (2011). [CrossRef] [PubMed]
- P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A82, 040501 (2010). [CrossRef]
- R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007). [PubMed]
- D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A75(3), 032511 (2007). [CrossRef]
- M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys.122, 204302 (2005). [CrossRef] [PubMed]
- Private Communication with A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber.
- Purchased from Intense Laser Co.
- Purchased from Thorlabs.
- R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys.128, 244316 (2008). [CrossRef] [PubMed]
- A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A81, 042509 (2010). [CrossRef]
- J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec.256, 57–67 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.