OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 15 — Jul. 16, 2012
  • pp: 16832–16837
« Show journal navigation

Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre  »View Author Affiliations


Optics Express, Vol. 20, Issue 15, pp. 16832-16837 (2012)
http://dx.doi.org/10.1364/OE.20.016832


View Full Text Article

Acrobat PDF (1792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization controlled quantum dashes (QDHs) Vertical Cavity Surface Emitting Lasers (VCSELs) emitting at 1.6 µm grown on InP(001) are investigated and compared with a quantum well (QW) similar VCSEL. Polarization stability of optically-pumped VCSELs under a low frequency modulation is investigated. While major fluctuations of the polarization-resolved intensity are observed on QW-based structures, enhanced polarization stability is reached on QDH-based ones. Statistical measurements over a large number of pulses show an extremely low variation in QDH VCSEL polarized output intensity, related to the intrinsic polarization control. This makes QDH VCSEL ideal candidate to improve telecommunication networks laser performances.

© 2012 OSA

Long wavelength Vertical Cavity Surface Emission Lasers (VCSELs) operating at 1.55 µm and above have known an increase interest in recent years. They have proven to be efficient transmitters for optical fiber communication networks [1

1. A. Sirbu, A. Mircea, A. Mereuta, A. Caliman, C. A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “Threshold analysis of vertical-cavity surface-emitting lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2006).

3

3. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008). [CrossRef]

]. VCSELs appear as the ideal source in optical telecommunication networks as they exhibit a low power consumption, a high spectral purity, a high coupling efficiency with optical fibers, and a strong potential in low cost fabrication. Quantum Wells (QW) are commonly used as a high gain medium in VCSELs, and are usually grown on conventional (001) oriented substrates. Despite these interests, QW-VCSELs suffer from the existence of two competiting orthogonal polarization eigenstates of emission [4

4. C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N. G. Stoffel, “Polarisation characteristics of quantum well vertical cavity surface emitting lasers,” Electron. Lett. 27(2), 163–165 (1991). [CrossRef]

,5

5. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain dependant polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 661–666 (1995). [CrossRef]

]. This appears as a severe drawback, as numerous components of optical interconnect and networks, such as polarizers, quarter- and half-wavelength plates are polarization sensitive. The lack of a well-defined polarization selection mechanism leads to the coexistence, switching, or bistabillity of lasing modes. Under digital modulation operation, the polarization ratio reached during each pulse fluctuates randomly. This fluctuation is more pronounced at higher modulation frequencies and is a major source of Relative Intensity Noise (RIN) or polarization noise in laser devices, leading to a crippling bit error rate [6

6. D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67(15), 2141–2143 (1995). [CrossRef]

].

Polarization instability in QW-based VCSELs has been studied by many research groups. It has been shown that residual strains in the epitaxial structure may lead to slightly different refractive indexes along the two main crystallographic directions [110] and [1-10) [7

7. K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical cavity surface emitting laser polarization,” Appl. Phys. Lett. 64(16), 2062–2064 (1994). [CrossRef]

]. There is though the coexistence of two orthogonal resonance eigenmodes. The two modes are in competition, and are driven by the overlap between those and the gain curve. Each mode can exist and switch one with each other, depending mainly on the input power excitation, the temperature-dependent cavity dilatation, or the parasitic optical feedback.

Later, theoretical models based on spin relaxation processes depict more precisely quantum mechanisms involved in the determination of the polarization state in VCSELs, and how it can be controlled [8

8. J. Martín-Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70(25), 3350 (1997). [CrossRef]

10

10. A. K. Jansen van Doorn, M. P. Van Exter, A. M. Van Der Lee, and J. P. Woerdman, “Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser,” Phys. Rev. A 55(2), 1473–1484 (1997). [CrossRef]

].

Several groups have already demonstrated nearly polarization-stabilized VCSELs, by introducing an internal loss anisotropy, such as birefringent mirrors [11

11. A. Valle, K. A. Shore, and L. Pesquera, “Polarization selection in birefringent vertical-cavity surface emitting lasers,” J. Lightwave Technol. 14(9), 2062–2068 (1996). [CrossRef]

], elliptical cavities [12

12. K. D. Choquette and R. E. Leibenguth, “Control of Vertical-Cavity Laser Polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6(1), 40–42 (1994). [CrossRef]

], and more recently birefringent gratings [13

13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]

] and high-contrast sub-wavelength gratings [14

14. M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M. C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010). [CrossRef]

]. Despite its clear interest, this last approach requires complex technological processing. Recently, we have proposed a process free approach based on the use of a strongly anisotropic gain medium constituted of elongated nanostructures, referred as quantum dashes (QDHs) These nanostructures have already proved to be efficient to control of polarization in GaAs-based VCSELs [15

15. Y. Ohno, S. Shimomura, S. Hiyamizu, Y. Takasuka, M. Ogura, and K. Komori, “Polarization control of vertical cavity surface emitting laser structure by using self-organized quantum wires grown on (775)B-oriented GaAs substrate by molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1526–1528 (2004). [CrossRef]

].We have thus demonstrated polarization-stable emission of QDH-based VCSELs on InP, along the [1–10] crystallographic direction under continuous wave (CW) operation with an extinction ratio over 30dB above threshold, and over 4 dB below threshold [16

16. J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009). [CrossRef]

]. As a comparison, QW-based VCSELs exhibits random polarization states below and above threshold, with various extinction ratios.

VCSEL samples have been grown on (001) nominally oriented InP substrates. The active region consists of three sets of 6 QDH layers (or three sets of three InGaAs QWs lattice-matched on InP), each set being located at a stationary electric field maximum intensity position in the microcavity. More details about the QDH growth can be found in reference [16

16. J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009). [CrossRef]

]. The micron-scale cavity is designed using sputter-deposited Bragg mirrors, based on two dielectric materials, amorphous silicon (a-Si) and amorphous silicon nitride (a-SiNx). These two materials display a high refractive index difference (Δn = 1.9), which allows to benefit from a better reflectivity and thermal conductivity in comparison with the epitaxial Bragg mirrors counterparts available on InP substrate [17

17. C. Levallois, A. Le Corre, S. Loualiche, O. Dehaese, H. Folliot, C. Paranthoen, F. Thoumyre, and C. Labbe, “Si wafer bonded of a-Si/a-SiNx distributed Bragg reflectors for 1.55-μm-wavelength vertical cavity surface emitting lasers,” J. Appl. Phys. 98(4), 043107 (2005). [CrossRef]

]. After the deposition of the bottom Bragg mirror including 6 a-SiNx/a-Si periods, an Au–In eutectic bonding is performed to transfer VCSEL samples on silicon substrates. The top Bragg mirror is deposited after the removing of the InP substrate by a mechanical polishing and a selective chemical etching [17

17. C. Levallois, A. Le Corre, S. Loualiche, O. Dehaese, H. Folliot, C. Paranthoen, F. Thoumyre, and C. Labbe, “Si wafer bonded of a-Si/a-SiNx distributed Bragg reflectors for 1.55-μm-wavelength vertical cavity surface emitting lasers,” J. Appl. Phys. 98(4), 043107 (2005). [CrossRef]

]. Both samples exhibit laser emission at room temperature around 1.55 µm under CW operation. Threshold densities of power are quite similar and close to 15 kW.cm−2.

To go further in the demonstration, and in order to quantify both dispersions of polarization-resolved intensity, we performed statistical measurements. These consisted in measuring the peak intensity distribution over 500 consecutive laser pulses, along one polarization orientation, for both VCSELs, as function of the incident power above threshold (Pth). Distributions of those intensities are presented in the Fig. 3(a)
Fig. 3 Polarization-resolved output intensity dispersion curves, measured along the [110] direction for the QW-VCSEL (a), and along the [1–10] direction for the QDH-VCSEL (b), for increasing incident power above threshold (from 1.0 Pth up to 2.3 Pth). Each dispersion curve is calculated over 500 consecutive pulses, at low frequency modulation (1µs, 100kHz).
(and Fig. 3(b)) along the [110] polarization orientation for the QW-VCSEL (along [1–10] for the QDH-VCSEL respectively).

Conclusion

In conclusion, we have carried out experiments under modulated excitation to compare directly the output polarization stability of VCSELs, as function of the active region nature, being QW- or QDH-based. In the case of the QW-VCSEL, we have shown the well-known polarization switching depending on the incident excitation power, which is not observed for the QDH-VCSEL. Polarization resolved intensity dispersion experiments carried out on both devices clearly evidenced excess noise induced by the random polarization switching on QW-VCSELs. In contrast, the QDH-VCSEL exhibits a constant relative intensity noise. This confrontation demonstrates a net superior stability in the output polarized emission when QDH is used as an active medium in the VCSEL. Further measurements of polarization noise at higher frequencies of modulation are under investigation for the QDH-VCSEL. These preliminary results tend to prove that QDH-VCSELs may be ideal candidates as highly reliable sources for polarization sensitive optical telecommunication links.

Acknowledgment

This research was supported by the French National Research Agency, through the Lambda-Access Project.

References and links

1.

A. Sirbu, A. Mircea, A. Mereuta, A. Caliman, C. A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “Threshold analysis of vertical-cavity surface-emitting lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2006).

2.

M. Mehta, D. Feezell, D. A. Buell, A. W. Jackson, L. A. Coldren, and J. E. Bowers, “Electrical design optimization of single-mode tunnel-junction-based long-wavelength VCSELs,” IEEE J. Quantum Electron. 42(7), 675–682 (2006). [CrossRef]

3.

W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett. 20(4), 291–293 (2008). [CrossRef]

4.

C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N. G. Stoffel, “Polarisation characteristics of quantum well vertical cavity surface emitting lasers,” Electron. Lett. 27(2), 163–165 (1991). [CrossRef]

5.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain dependant polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 661–666 (1995). [CrossRef]

6.

D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 67(15), 2141–2143 (1995). [CrossRef]

7.

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical cavity surface emitting laser polarization,” Appl. Phys. Lett. 64(16), 2062–2064 (1994). [CrossRef]

8.

J. Martín-Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70(25), 3350 (1997). [CrossRef]

9.

A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSEL’s,” IEEE J. Quantum Electron. 35(3), 342–351 (1999). [CrossRef]

10.

A. K. Jansen van Doorn, M. P. Van Exter, A. M. Van Der Lee, and J. P. Woerdman, “Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser,” Phys. Rev. A 55(2), 1473–1484 (1997). [CrossRef]

11.

A. Valle, K. A. Shore, and L. Pesquera, “Polarization selection in birefringent vertical-cavity surface emitting lasers,” J. Lightwave Technol. 14(9), 2062–2068 (1996). [CrossRef]

12.

K. D. Choquette and R. E. Leibenguth, “Control of Vertical-Cavity Laser Polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6(1), 40–42 (1994). [CrossRef]

13.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]

14.

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M. C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010). [CrossRef]

15.

Y. Ohno, S. Shimomura, S. Hiyamizu, Y. Takasuka, M. Ogura, and K. Komori, “Polarization control of vertical cavity surface emitting laser structure by using self-organized quantum wires grown on (775)B-oriented GaAs substrate by molecular beam epitaxy,” J. Vac. Sci. Technol. B 22(3), 1526–1528 (2004). [CrossRef]

16.

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009). [CrossRef]

17.

C. Levallois, A. Le Corre, S. Loualiche, O. Dehaese, H. Folliot, C. Paranthoen, F. Thoumyre, and C. Labbe, “Si wafer bonded of a-Si/a-SiNx distributed Bragg reflectors for 1.55-μm-wavelength vertical cavity surface emitting lasers,” J. Appl. Phys. 98(4), 043107 (2005). [CrossRef]

18.

J.-M. Lamy, C. Levallois, A. Nakhar, P. Caroff, C. Paranthoen, R. Piron, A. Le Corre, A. Ramdane, and S. Loualiche, “Characterization of InAs quantum wires on (001) InP: toward the realization of VCSEL structures with a stabilized polarization,” Phys. Status Solidi., A Appl. Mater. Sci. 204(6), 1672–1676 (2007). [CrossRef]

OCIS Codes
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.5430) Physical optics : Polarization
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 14, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 18, 2012
Published: July 11, 2012

Citation
J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, "Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes," Opt. Express 20, 16832-16837 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-15-16832


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sirbu, A. Mircea, A. Mereuta, A. Caliman, C. A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “Threshold analysis of vertical-cavity surface-emitting lasers with intracavity contacts,” IEEE Photon. Technol. Lett.16(5), 1230–1232 (2006).
  2. M. Mehta, D. Feezell, D. A. Buell, A. W. Jackson, L. A. Coldren, and J. E. Bowers, “Electrical design optimization of single-mode tunnel-junction-based long-wavelength VCSELs,” IEEE J. Quantum Electron.42(7), 675–682 (2006). [CrossRef]
  3. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, “1.55µm VCSEL Arrays for High-Bandwidth WDM-PONs,” IEEE Photon. Technol. Lett.20(4), 291–293 (2008). [CrossRef]
  4. C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N. G. Stoffel, “Polarisation characteristics of quantum well vertical cavity surface emitting lasers,” Electron. Lett.27(2), 163–165 (1991). [CrossRef]
  5. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain dependant polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995). [CrossRef]
  6. D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.67(15), 2141–2143 (1995). [CrossRef]
  7. K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062–2064 (1994). [CrossRef]
  8. J. Martín-Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett.70(25), 3350 (1997). [CrossRef]
  9. A. Gahl, S. Balle, and M. San Miguel, “Polarization dynamics of optically pumped VCSEL’s,” IEEE J. Quantum Electron.35(3), 342–351 (1999). [CrossRef]
  10. A. K. Jansen van Doorn, M. P. Van Exter, A. M. Van Der Lee, and J. P. Woerdman, “Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser,” Phys. Rev. A55(2), 1473–1484 (1997). [CrossRef]
  11. A. Valle, K. A. Shore, and L. Pesquera, “Polarization selection in birefringent vertical-cavity surface emitting lasers,” J. Lightwave Technol.14(9), 2062–2068 (1996). [CrossRef]
  12. K. D. Choquette and R. E. Leibenguth, “Control of Vertical-Cavity Laser Polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett.6(1), 40–42 (1994). [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007). [CrossRef]
  14. M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M. C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett.22(1), 15–17 (2010). [CrossRef]
  15. Y. Ohno, S. Shimomura, S. Hiyamizu, Y. Takasuka, M. Ogura, and K. Komori, “Polarization control of vertical cavity surface emitting laser structure by using self-organized quantum wires grown on (775)B-oriented GaAs substrate by molecular beam epitaxy,” J. Vac. Sci. Technol. B22(3), 1526–1528 (2004). [CrossRef]
  16. J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett.95(1), 011117 (2009). [CrossRef]
  17. C. Levallois, A. Le Corre, S. Loualiche, O. Dehaese, H. Folliot, C. Paranthoen, F. Thoumyre, and C. Labbe, “Si wafer bonded of a-Si/a-SiNx distributed Bragg reflectors for 1.55-μm-wavelength vertical cavity surface emitting lasers,” J. Appl. Phys.98(4), 043107 (2005). [CrossRef]
  18. J.-M. Lamy, C. Levallois, A. Nakhar, P. Caroff, C. Paranthoen, R. Piron, A. Le Corre, A. Ramdane, and S. Loualiche, “Characterization of InAs quantum wires on (001) InP: toward the realization of VCSEL structures with a stabilized polarization,” Phys. Status Solidi., A Appl. Mater. Sci.204(6), 1672–1676 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited