## Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique |

Optics Express, Vol. 20, Issue 16, pp. 17374-17379 (2012)

http://dx.doi.org/10.1364/OE.20.017374

Acrobat PDF (1624 KB)

### Abstract

A three phase shifted (3PS) distributed feedback (DFB) semiconductor laser based on Reconstruction-Equivalent-Chirp (REC) technique is experimentally demonstrated for the first time. The simulation results show that the performances of the equivalent 3PS DFB semiconductor laser are nearly the same as that of the true 3PS laser. However, it only changes the μm-level sampling structures but the seed grating is uniform. So, its cost of fabrication is low. The measurement results exhibit its good single longitudinal mode (SLM) operation even at high bias current and surrounding temperature.

© 2012 OSA

## 1. Introduction

1. Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. **26**(9), 1132–1144 (2008). [CrossRef]

2. A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett. **30**(12), 965–967 (1994). [CrossRef]

3. G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. **53**(3), 178–179 (1988). [CrossRef]

4. M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett. **1**(8), 200–201 (1989). [CrossRef]

5. T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett. **71**(20), 2880–2882 (1997). [CrossRef]

6. Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett. **13**(3), 245–247 (2001). [CrossRef]

7. N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. **3**(2), 541–546 (1997). [CrossRef]

8. T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. **14**(6), 967–976 (1996). [CrossRef]

9. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. **15**(3), 514–520 (2009). [CrossRef]

10. H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron. **40**(10), 1377–1383 (2004). [CrossRef]

11. D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng. **32**(1-4), 331–350 (1996). [CrossRef]

12. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express **17**(7), 5240–5245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-7-5240. [CrossRef] [PubMed]

## 2. Theory and simulation analysis

### 2.1 Principle

*ΔP*in the sampling structure, the index modulation of the sampled Bragg grating can be expressed as [14

14. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express **15**(5), 2348–2353 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-5-2348. [CrossRef] [PubMed]

*P*is the sampling period,

*Λ*is the seed grating period,

_{0}*Δn*is the index modulation of the seed grating and

_{s}*m*denotes the

*m*order Fourier series. If an abrupt shift of

^{th}*ΔP*is introduced to the sampling structure, the phase shift of

*θ*is achieved in each channel. Furthermore, if the −1st sub-grating is used as the working grating and

_{m}= −2mπΔP/P*ΔP = P/3*is equally distributed along the cavity as shown in Fig. 1 , three phase shifts of

*θ*can be achieved. The −1st sub-grating period is given byIf selecting the suitable sampling period

_{-1}= 2π/3*P*, the −1st sub-grating Bragg wavelength can locate within the gain region, while the others are outside the gain region.

### 2.2 Simulation analysis

15. T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron. **27**(11), 2404–2414 (1991). [CrossRef]

*P*is 4.2μm. The abrupt shift

*ΔP*in sampling structure is 1.4μm. The grating coupling coefficient κ

_{true}of the true DFB structure is 83.3 cm

^{−1}. In order to obtain the same index modulation strength, the coupling coefficient κ

_{seed}of seed grating should be 250 cm

^{−1}. So the index modulation of −1st sub-grating is κ

_{seed}/3 which is equal to κ

_{true}[14

14. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express **15**(5), 2348–2353 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-5-2348. [CrossRef] [PubMed]

16. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron. **3**(2), 547–554 (1997). [CrossRef]

## 3. Fabrication and experimental results

### 3.1 Optical power-current characteristics

### 3.2 Optical spectra

### 3.3 Heat induced wavelength shift

10. H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron. **40**(10), 1377–1383 (2004). [CrossRef]

17. G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett. **8**(1), 22–24 (1996). [CrossRef]

*L*caused by the temperature change, the change of the seed grating period is given by,Here,

*L*is the cavity length. The −1st sub-grating period change can be further expressed as,Therefore, it can be found that the period change of the REC based DFB laser is amplified by a factor of

*P*= 5µm and

*Λ*= 232nm, the factor is only 1.0997. So it nearly doesn’t contribute to the wavelength shift. Figure 6 is the measured lasing wavelength versus the temperature. The wavelength shift ratios are both about 0.09nm/°C at bias currents of 70mA and 110mA, respectively. This value is equal to that of the normal DFB semiconductor laser. Thus, if the thermal tuning is applied, the same tuning scheme can be used.

_{0}## 4. Discussion

*n*is 3.2). The fabrication precision is largely relaxed and it denotes that the integrated multi-wavelength DFB semiconductor laser array can be easily achieved.

_{eff}*p*as follows,When the 0th wavelength is 1485nm,

*P*is 5530nm and −1st wavelength is 1550nm, a deviation of 0.125nm for

*p*of 65.2nm, where the error tolerance is largely relaxed by about 520 times. Equation (5) shows it is reasonable that the fine complex grating structure can be controlled by the µm-level pre-designed sampling structure. This also well benefits the fabrication of the DFB laser array with complex grating structure which requires the accurate control of the each lasing wavelength. If REC technique is applied, the fabrication tolerance should be highly relaxed. Finally, it should be mentioned that though the larger

*P*can lead to the higher precision, the wavelength spacing between the 0th order and −1st order sub-grating becomes smaller for larger

*P*. So in order to simultaneously ensure the SLM operation,

*P*should be comprehensively considered.

## 5. Conclusion

## Acknowledgment

## References and links

1. | Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol. |

2. | A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett. |

3. | G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. |

4. | M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett. |

5. | T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett. |

6. | Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett. |

7. | N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron. |

8. | T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. |

9. | H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. |

10. | H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron. |

11. | D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng. |

12. | J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express |

13. | J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, “Monolithically integrated 30-wavelength DFB laser array,” Proc. of SPIE-OSA-IEEE |

14. | Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express |

15. | T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron. |

16. | W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron. |

17. | G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett. |

**OCIS Codes**

(140.3490) Lasers and laser optics : Lasers, distributed-feedback

(140.5960) Lasers and laser optics : Semiconductor lasers

**ToC Category:**

Lasers and Laser Optics

**History**

Original Manuscript: May 29, 2012

Revised Manuscript: July 8, 2012

Manuscript Accepted: July 8, 2012

Published: July 16, 2012

**Citation**

Yuechun Shi, Xiangfei Chen, Yating Zhou, Simin Li, Lianyan Li, and Yijun Feng, "Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique," Opt. Express **20**, 17374-17379 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17374

Sort: Year | Journal | Reset

### References

- Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol.26(9), 1132–1144 (2008). [CrossRef]
- A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994). [CrossRef]
- G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988). [CrossRef]
- M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989). [CrossRef]
- T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett.71(20), 2880–2882 (1997). [CrossRef]
- Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001). [CrossRef]
- N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997). [CrossRef]
- T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996). [CrossRef]
- H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009). [CrossRef]
- H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004). [CrossRef]
- D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996). [CrossRef]
- J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-7-5240 . [CrossRef] [PubMed]
- J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, “Monolithically integrated 30-wavelength DFB laser array,” Proc. of SPIE-OSA-IEEE 7631, 763104–1-763104–6 (2009).
- Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express15(5), 2348–2353 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-5-2348 . [CrossRef] [PubMed]
- T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron.27(11), 2404–2414 (1991). [CrossRef]
- W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997). [CrossRef]
- G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.