OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 17552–17559
« Show journal navigation

Multiband plasmonic absorber based on transverse phase resonances

Yanxia Cui, Kin Hung Fung, Jun Xu, Sailing He, and Nicholas X. Fang  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 17552-17559 (2012)
http://dx.doi.org/10.1364/OE.20.017552


View Full Text Article

Acrobat PDF (1508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a multiband plasmonic absorber based on transverse phase resonances. We show that the modification of conventional metallic surfaces of T-shape grooves can cause mode splitting of the plasmonic waveguide cavity modes due to lattice scattering and all the new resonant modes exhibit large absorbtivity greater than 90%. Some of the generated absorption peaks have wide-angle characteristics. Furthermore, we find that the proposed structure is fairly insensitive to the alignment error between different layers.

© 2012 OSA

1. Introduction

While a flat metallic surface strongly reflects light rather than absorbs light, we could obtain anomalous strong light absorption by structuring the metal surface [1

1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901). [CrossRef]

]. The anomalous light absorption in metal structures is mainly due to excitation of surface plasmon polaritons (SPPs) or localized surface plasmon polaritons (LSPPs) [2

2. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

]. Recently, lots of different kinds of perfect absorbers based on SPPs or LSPPs (i.e., plasmonic absorbers) [3

3. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998). [CrossRef]

8

8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]

] have emerged, opening many opportunities for applications in thin film solar cells [9

9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]

], thermal photovoltaics and thermal emitters [10

10. C. Wu, B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012). [CrossRef]

], and highly sensitive bio-sensors [11

11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]

,12

12. W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010). [CrossRef] [PubMed]

]. Besides, perfect electromagnetic energy absorptions in structured metal surfaces have also been demonstrated in the gigahertz [13

13. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009). [CrossRef]

] and terahertz regimes [14

14. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]

].

The past research reflects that it is not hard to construct plasmonic absorbers at single resonant band. It is, however, desirable to have perfect absorptions over broad spectral bands (or at least over multi-bands) in order to collect as more incident energy as possible. Many approaches such as combining different resonators [15

15. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010). [CrossRef]

20

20. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012). [CrossRef] [PubMed]

], forming anti-reflection effects [21

21. J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009). [CrossRef]

,22

22. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19(22), 21155–21162 (2011). [CrossRef] [PubMed]

], and exciting slow-light waves [23

23. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012). [CrossRef] [PubMed]

] have been used to achieve broadband or multiband absorption. In this paper, we propose an alternative method to broaden the absorption band of absorbers based on traditional plasmonic waveguides. The earliest absorbers based on plasmonic waveguides are of rectangular cross section [3

3. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998). [CrossRef]

,4

4. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16(20), 15431–15438 (2008). [CrossRef] [PubMed]

], but they have relatively inferior performances on localizing and guiding light compared to the V-groove waveguides of triangular-shaped cross-sections [24

24. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006). [CrossRef] [PubMed]

,25

25. T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009). [CrossRef]

]. By modifying the V-groove structure and introducing some additional phase resonances [26

26. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006). [CrossRef] [PubMed]

,27

27. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009). [CrossRef]

] along the horizontal axis, we show that a moderate absorption peak could be split into two distinct peaks of enhanced absorption due to lattice scattering.

2. Structures and methods

The present design works only for an incident plane wave of TM polarization (with magnetic field Hy perpendicular to the x-z plane) and it may not be directly generalized to absorb both polarizations. The metal is considered to be silver in our simulation and its permittivity parameters are obtained from Ref [28

28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

]. The bottom metal layer is assumed to be thick enough so that there is no light transmission (T = 0). Rigorous Coupled-wave Analysis (RCWA) method [29

29. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986). [CrossRef]

], which has been verified by studying the structures in Ref [30

30. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004). [CrossRef] [PubMed]

], is employed in the simulation. The absorbtivity (η) is then calculated from the reflectivity (R) including all reflections orders by the formula η = 1-R. Unless otherwise mentioned, the geometrical parameters we use are P = 1,100 nm, W1 = 200 nm, h1 = 300 nm, W2 = 50 nm, h2 = 350 nm, and d = 30 nm.

3. Results and discussions

The calculated normal-incidence absorption spectra as a function of photon energies (ω) are plotted in Fig. 2(a)
Fig. 2 (a) Absorption spectra as a function of photon energies for the original T-groove surface (dashed line) and our proposed structure (solid line). All of their absorption peaks are labeled. The absorption spectra for the metallic surface with only the bottom narrow grooves is also displayed by the cross line. (b) The band diagram for the original T-groove surface (left panel) and our proposed structure (right panel) with the thick white solid line representing the folded light line. Thin red solid lines indicate the light line for θ = 15° and 89°. The dashed line in the right panel of (b) indicates the trend of the band of ω4.
. It is obvious that the modified metallic structure (solid) absorbs light much better than the original design (dashed). We have also calculated the integrated absorption efficiency (β) within the range of [0.3, 1] eV for the two absorbers. Results shows that β equals to 32.6% for our multiband absorber, which is around 50% greater than that of the original T-groove case (β = 22.2%). We note that for the original T-groove structure, its absorption spectra can be optimized by tuning the periodicity (P) [25

25. T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009). [CrossRef]

] and the optimized value of the integrated absorption efficiency is around 22.8%, much lower than that of our multiband absorber as well.

In contrast, the absorption spectrum for our proposed structure [solid curve, Fig. 2(a)] exhibits four strong absorption peaks located at ω = 0.41, 0.47, 0.79, and 0.87 eV, labeled as ω1, ω2, ω3, and ω4, respectively. All these four peaks have much higher theoretical absorption efficiencies η >96%, and they can be grouped into two types. The two peaks at ω1 and ω2 belong to the first type, which is associated with the first order mode (ω01) of the original T-groove, while the other two peaks at ω3 and ω4 belong to the second type, which is associated with the second order mode (ω02). The band diagram of our modified structure is also shown in the right panel of Fig. 2(b) in contrast with that of the original T-groove surface. One sees that the two resonances of the first type (ω1 and ω2) are almost angle independent (θ could approach 89°), while the other two resonances of the second type (ω3 and ω4) are influenced a lot by the free-photon dispersion; this is exactly in accordance with the resonances at ω01 and ω02 for the original T-groove surface. It should be noted that the band at ω4 [dashed line, Fig. 2(b)] is relatively flat as compared to the band at ω3. And this will be explained later.

In order to understand the four plasmon modes of our proposed structure, we have also studied the distributions of field magnitude |Hy| and phase Φ(Hy) [see Fig. 3(b), 3(c), 3(e), and 3(f)]. It should be noted that the absorption properties show a strong dependence on the total number of grooves N in one period (discussed at the end of this section). In Fig. 1(b), we have four narrow grooves in each period (i.e., N = 4). We label the grooves within a period from #1 to #4 as shown in Fig. 1(b) (groove #1 is separated into two halves in our defined unit cell). If we only consider the field distribution within the middle groove (#3) and also the top part of the T-grooves, we see that both the magnitude and phase distributions of the first type [Fig. 3(b) and 3(c)] is very close to that of the original case [Fig. 3(a)]. This is also true for the second type [Fig. 3(e) and 3(f)] versus the original case [Fig. 3(d)]. It means that, for our proposed metallic structure, although a horizontal gap geometrically breaks the original T-groove into two parts, this gap of value d = 30 nm is too small to alter the field distribution within the T-groove.

Since there are additional narrow grooves that can support resonances, part of the field energy is coupled to the modes in these narrow grooves after we open the horizontal air gap. For instance, as shown in Fig. 3(b), groove #1 can have a concentrated field that is even higher than groove #3 for the peak at ω1. Such phenomenon also occurs for the peak at ω4 [Fig. 3(f)]. This might be the reason for the relatively flat band at resonance ω4 in comparison with that at ω3 as we mentioned earlier on Fig. 2(b). At ω4, attributed to the higher energy concentration within the region of groove #1, which does not directly interact with the incident light, the whole coupling to free photons are relatively weaker and less sensitive to dispersion. However, at ω3, the electromagnetic field in the T-groove part is comparably stronger than that in other narrow grooves. This feature indicates that the whole structure would strongly interact with the incident free photon, which causes a dispersive absorption band just as that at ω02 for the original T-groove surface.

For the two resonances of the second type (ω3 and ω4) generated due to mode splitting on the basis of the second order of the original T-groove resonance (ω02), they are also quite different from each other in terms of the phase information around the input opening of the narrow grooves along x-direction. In detail, the phase distribution at ω3 and ω4 can be represented by ‘ + + + + + ’ and ‘- - + - -’, respectively. Besides, we find that ω3 < ω4, that is because there is no anti-phase adjacent groove at ω3, while groove #3 is in anti-phase with its neighbors at ω4.

From a different point of view, we could also regard our proposal as a double-layer structure comprising of the top nanostrip layer and the bottom nanogroove layer. Our study shows that our double-layer metallic surface works much better in comparison with the case of a single layer with only the narrow grooves which displays only one weak absorption peak (ηmax = 38%) at ω = 0.55 eV at normal incidence as shown in Fig. 2(a) by the cross line. This also means that nearly three-fold of improvement of absorption is achieved after adding the top nanostrip layer, in conjunction of additional peaks due to mode splitting.

An important practical issue for such a double-layer structure is that, careful alignment between layers in the fabrication process may be necessary. Therefore, we study the absorption dependence on such alignment error. We define a parameter Sx as the distance between the center of the top wide air gap and the center of the bottom narrow groove (#3) along the x-axis. We tune Sx from 0 to P/8 (only this range is considered because all the bottom narrow grooves are identical) and plot the absorption spectra at normal incidence in Fig. 4(a)
Fig. 4 Absorption spectra at normal incidence when the relative position of different layers along x direction (Sx) is tuned (a) and when the width of top wide air gap (W1) is tuned (b).
. Apparently, when Sx lies in the range between 0 to 100 nm and the absorption efficiency of our system within the considered frequency range is almost invariant. When Sx>100 nm (i.e., the center of top wide air gap is far from the center of bottom narrow groove), the resonance at ω2 becomes weaker and finally disappears, while other three absorption peaks are not influenced at all. In this sense, our light absorber is quite robust and fairly insensitive to alignment error.

In Fig. 4(b), we also plot the absorption at normal incidence as the width of the top wide air gap (W1) varies in the range of 100 to 500 nm. One sees that the resonances at ω1 and ω2 have only a slight blueshift when W1 increases. But the resonances at ω3 and ω4 have a very small redshift when W1 is smaller than 300 nm because the mode volume is increased in-between neighboring nanostrips and then a slight blueshift when W1 is larger than 300 nm because the resonant mode under the nanostrip has been compressed. Figure 4(b) also shows that the absorption efficiency for the resonance at ω3 becomes much weaker when W1 is larger than 300 nm because its excitation condition has been destroyed gradually. Additionally, it is indicated that the spectrum is almost insensitive to the width of the top wide air gap within the range from W1 = 100 nm to 300 nm.

Our study also indicates that there is an optimal absorption enhancement with respect to the number of the narrow grooves in each period, as shown in Fig. 5
Fig. 5 Absorption spectra at normal incidence when the number of narrow grooves (N) in each period varies. 2-D configurations for the cases of N = 1 to 3 are shown in the insets.
. When the grooves are added gradually from 1 to 3, the number of the absorption peaks increases due to mode splitting. When N equals to 4, the above-mentioned four phase states are all perfectly excited. However, further increase of groove number N does not improve absorption effectively. For example, when N = 8, we can obtain more than three sub-bands near 0.4 eV. But the efficiency for some bands is pretty low because of phase mismatch.

4. Conclusions

In conclusion, we have demonstrated an efficient light absorber by a novel hybrid grating structure inspired by V-groove metallic surfaces. By introducing a small horizontal gap and additional narrow grooves which support additional transverse phase resonances, the overall metallic surface displays four strong absorption peaks at infrared frequencies. For the origin of the peaks, we need to emphasize that both of the additional narrow grooves and the horizontal gap are very important. The additional narrow grooves are responsible to generate lattice scattering along the x-axis to cause the transverse phase resonances. The horizontal gap plays the role to make such lattice scattering effect possible by feeding energy into the narrow grooves. Our study has shown that the present structure is robust and does not require highly accurate alignment in fabrication. We have also shown that some of the generated absorption peaks exhibit wide-angle characteristic.

Acknowledgments

This work is partially supported by the National Science Foundation (CMMI 0846771), the National Natural Science Foundation of China (60990320 and 60901039), and AOARD (114045). Cui acknowledges Natural Foundation of Shanxi (2012011020-4), Special Foundation of Taiyuan University of Technology (No. 2012L033), and the Starting Research Fund from Taiyuan University of Technology.

References and links

1.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond. 18(1), 269–275 (1901). [CrossRef]

2.

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

3.

T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998). [CrossRef]

4.

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16(20), 15431–15438 (2008). [CrossRef] [PubMed]

5.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]

6.

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009). [CrossRef] [PubMed]

7.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]

8.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]

9.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]

10.

C. Wu, B. Neuner III, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012). [CrossRef]

11.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]

12.

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010). [CrossRef] [PubMed]

13.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94(4), 041913 (2009). [CrossRef]

14.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]

15.

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010). [CrossRef]

16.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011). [CrossRef] [PubMed]

17.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011). [CrossRef]

18.

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37(3), 308–310 (2012). [CrossRef] [PubMed]

19.

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012). [CrossRef] [PubMed]

20.

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012). [CrossRef] [PubMed]

21.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009). [CrossRef]

22.

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19(22), 21155–21162 (2011). [CrossRef] [PubMed]

23.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012). [CrossRef] [PubMed]

24.

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006). [CrossRef] [PubMed]

25.

T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80(19), 195407 (2009). [CrossRef]

26.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006). [CrossRef] [PubMed]

27.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009). [CrossRef]

28.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

29.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986). [CrossRef]

30.

Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004). [CrossRef] [PubMed]

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(310.3915) Thin films : Metallic, opaque, and absorbing coatings

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 15, 2012
Revised Manuscript: July 5, 2012
Manuscript Accepted: July 12, 2012
Published: July 18, 2012

Citation
Yanxia Cui, Kin Hung Fung, Jun Xu, Sailing He, and Nicholas X. Fang, "Multiband plasmonic absorber based on transverse phase resonances," Opt. Express 20, 17552-17559 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-17552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. Lond.18(1), 269–275 (1901). [CrossRef]
  2. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  3. T. López-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, and B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett.81(3), 665–668 (1998). [CrossRef]
  4. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008). [CrossRef] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  6. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express17(8), 6770–6781 (2009). [CrossRef] [PubMed]
  7. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14(2), 024005 (2012). [CrossRef]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  12. W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A.107(7), 2781–2786 (2010). [CrossRef] [PubMed]
  13. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett.94(4), 041913 (2009). [CrossRef]
  14. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008). [CrossRef]
  15. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  16. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011). [CrossRef] [PubMed]
  17. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett.99(25), 253101 (2011). [CrossRef]
  18. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett.37(3), 308–310 (2012). [CrossRef] [PubMed]
  19. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012). [CrossRef] [PubMed]
  20. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012). [CrossRef] [PubMed]
  21. J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B80(12), 125103 (2009). [CrossRef]
  22. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19(22), 21155–21162 (2011). [CrossRef] [PubMed]
  23. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  24. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett.31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  25. T. Søndergaard and S. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B80(19), 195407 (2009). [CrossRef]
  26. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett.96(25), 257402 (2006). [CrossRef] [PubMed]
  27. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett.94(9), 091107 (2009). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  29. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3(11), 1780–1787 (1986). [CrossRef]
  30. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express12(25), 6106–6121 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited