OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18031–18043
« Show journal navigation

Appropriate green phosphor of SrSi2O2N2:Eu2+,Mn2+ for AC LEDs

Chiao-Wen Yeh, Ye Li, Jing Wang, and Ru-Shi Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18031-18043 (2012)
http://dx.doi.org/10.1364/OE.20.018031


View Full Text Article

Acrobat PDF (3009 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An AC (alternating current) LED exhibited the advantages of a low drive current, low static electricity, lack of a need for a rectifier, and high extraction efficiency. The input operating voltage of an AC LED is around 80V, and its operating frequency is 120 Hz or less. When the voltage is converted, a time gap of 1/120 s (10 ms), called dead time, is generated. This time gap is closely related to the scintillation phenomenon. Therefore, AC LEDs that have a phosphor composition, whose half-life composition can compensate for dead time that is generated during the voltage conversion, are sought to solve the problem of scintillation. The object of this work is to provide a phosphor SrSi2O2N2:Eu2+,Mn2+ for AC LEDs, in which the dead time that is generated during the voltage conversion is compensated for by the half-life of the phosphor.

© 2012 OSA

1. Introduction

Next-generation solid state lighting is based on white light-emitting diodes (WLEDs). They have attracted increasing attention because of their high brightness and light extraction efficiency, long lifetime, various sizes for produce, and environmental friendliness. In 2009, the journal, Nature, claimed that bulb technology was due for a change [1

1. S. Tonzani, “Lighting technology: time to change the bulb,” Nature 459(7245), 312–314 (2009). [CrossRef] [PubMed]

]. To protect the environment by saving energy and reducing carbon dioxide emissions, light-emitting diodes are the strongest candidate. WLEDs are widely used as backlights in electronic devices or displays, and they are expected to replace traditional fluorescent lamps for general lighting purposes because their efficiency and color rendering properties are significantly better. The most common white LED is composed of a yellow cerium doped yttrium aluminum garnet (Y3Al5O12:Ce3+) with a blue InGaN chip [2

2. M. Yamada, Y. Narukawa, and T. Mukai, “Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well,” Jpn. J. Appl. Phys. 41(Part 2, No. 3A), L246–L248 (2002). [CrossRef]

]. However, the white light that it produces poor color rendering because of color deficiency in the red regions. Nitride-based phosphors provide chemical and thermal stability, and most importantly, they provide long wavelength emission, which improves color rendering index (CRI). A higher color rendering index means greater similarity approach to sunlight, and greater effectiveness for display or illumination purposes. To overcome the poor CRI of traditional LED, green and red phosphors have been combined with blue LEDs [3

3. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-enhanced white-light-emitting diode using a new red phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003). [CrossRef]

8

8. C. C. Yang, C.-M. Lin, Y. J. Chen, Y. T. Wu, S. R. Chuang, R. S. Liu, and S. F. Hu, “Highly stable three-band white light from an InGaN-based blue lightemitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90(12), 123503 (2007). [CrossRef]

]. The 5d orbitals of Eu2+ or Ce3+ in nitride compounds with highly covalent chemical bonds by nephelauxetic effect is significantly split into several levels under the strong crystal field. The crystal field splitting, which yields the downshift of the excited state of rare earth ions, resulting in phosphors that can be excited by blue light and whose emissions are red-shifted [9

9. R.-J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma, “Optical properties of Eu2+ in α-SiAlON,” J. Phys. Chem. B 108(32), 12027–12031 (2004). [CrossRef]

,10

10. J. W. H. van Krevel, J. W. T. van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-SiAlON materials,” J. Solid State Chem. 165(1), 19–24 (2002). [CrossRef]

].

Very recently, rare-earth doped oxynitride or nitride compounds have been attracting increasing attention as photo luminescent materials because of their high brightness, low thermal quenching, thermal and chemical stability. The most commonly used orange-red phosphor is M2Si5N8:Eu2+ (M = Ca, Sr, Ba) [11

11. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1-2), 273–279 (2006). [CrossRef]

,12

12. R.-J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006). [CrossRef]

]. SrSi2O2N2:Eu2+ is a commonly used yellow-green phosphor [13

13. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A promising class of novel LED conversion phosphors,” Chem. Mater. 17(12), 3242–3248 (2005). [CrossRef]

,14

14. V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, “Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21(2), 316–325 (2009). [CrossRef]

]. The luminescent properties of SrSi2O2N2:Eu2+ have been thoroughly investigated. To improve these photoluminescence properties, co-doping with different metal ions have been investigated, such as by Eu2+ with Ce3+, Dy3+ and Mn2+ [15

15. R. S. Liu, Y. H. Liu, and N. C. Bagkar, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91(6), 061119 (2007). [CrossRef]

]. Eu2+ and Mn2+ co-doped silicon-based oxynitride, with improved photoluminescence and energy transfer from Eu2+ to Mn2+ has been discussed elsewhere [16

16. Q. N. Fei, Y. H. Liu, T. C. Gu, and D. J. Wang, “Color improvement of white-light through Mn-enhancing yellow-green emission of SrSi2O2N2:Eu phosphor for white light emitting diodes,” J. Lumin. 131(5), 960–964 (2011). [CrossRef]

,17

17. X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and J. Zeng, “Luminescence and energy transfer of Mn2+ co-doped SrSi2O2N2:Eu2+ green-emitting phosphors,” Mater. Sci. Eng. B 164(1), 12–15 (2009). [CrossRef]

]. The purpose of this work to elucidate the thermal luminescence mechanisms of SrSi2O2N2:Eu2+,Mn2+ for exploitation in alternating current (AC) LED.

2. Experimental section

2.1 Materials and synthesis

Green phosphors, Sr0.96-xSi2O2N2:Eu0.04,Mnx, were prepared by gas-pressure sintering (GPS) and a solid-state reaction of SrCO3 (Aldrich, 99.99%), Si3N4 (Aldrich, 99.9%), rare earth dopant Eu2O3 (Aldrich, 99.99%) and MnCO3 (Cerac, 99.95%). The starting powder was ground in an agate mortar for 30 minutes to ensure homogeneity. The mixtures were placed in a boron nitride (BN) crucible and sintered at 1400°C for 1h under a pressure of 0.9MPa in the GPS furnace (FVPHP-R-5, FRET-25, Fujidempa Kogyo Co. Ltd.) with a graphite heater. After firing, the samples were cooled to room temperature. They were then ground again for subsequent use.

2.2 Characterization

The purity and composition of each phase were recorded on a PANalytical XPert’Pert PRO diffractometer in transmission mode with Cu Kαradiation (λ = 1.5418Å) at 45 kV and 40 mA. For phase identification, an average scan (0.03°/s) was performed. Data were collected in a 2θ range from 10° to 80° with intervals of 0.02°. Structural refinements were defined herein using a general structure analysis system (GSAS) refinement program. The photoluminescence excitation and emission spectra were obtained using a FluoroMax-3 and Fluoromax-P spectraophotometer at room temperature using a 150W Xe lamp and a Hamamatsu R928 photo-multiplier tube (PMT). Fluorescence decays were measured using an Edinburgh FLS920 spectrometer with a gated hydrogen arc lamp at room temperature. Two-dimensional and three-dimensional thermoluminescence spectra were recorded using an ROSB TL&OSL 3D spectrometer. The samples were irradiated under 254 nm for 1 minute, and the emission peak obtained during heating at 2°C /s. The devices were packaged using a 460 nm-chip with driving currents of 5-10 mA at 100 V and 60 Hz.

3. Results and discussion

3.1 XRD refinement and crystal parameter

Figure 1
Fig. 1 XRD patterns of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphors with various x.
presents XRD patterns of the series of Sr0.96-xSi2O2N2:Eu0.04 co-doped Mn with different ratio form x = 0 to 0.08 samples are confirmed the phase purity. Nearly all of the diffraction peaks of the samples were consistent with those of SrSi2O2N2 - ICSD # 172877 in the doping concentration ranges that were investigated in this study. The results indicate that the series of samples used in this research are structural and chemical SrSi2O2N2. The crystal structure of SrSi2O2N2 is triclinic (space group: P1). The Eu2+ and Mn2+ ions occupied the Sr site, and the coordination number was 7 [18

18. O. Oeckler, F. Stadler, T. Rosenthal, and W. Schnick, “Real structure of SrSi2O2N2,” Solid State Sci. 9(2), 205–212 (2007). [CrossRef]

]. The decrease in crystallinity of Sr0.96-xSi2O2N2:Eu0.04,Mnx with increasing Mn2+ dopant content was observed from the XRD patterns, which can be attributed to the variation of charges of dopants in the lattice. As shown in Fig. 1, the peaks of the XRD patterns shifted to a higher 2θ angle as the Mn2+ concentration increased, which revealing that Mn2+ dopants were present in the host lattice.

To confirm that the doped structure was consistent with the crystal structure SrSi2O2N2, Rietveld refinement was performed as shown in Fig. 2
Fig. 2 Experimental (crosses), calculated (solid line) and difference (bottom) of Rietveld refinement of powder XRD patterns of Sr0.96-xSi2O2N2:Eu0.04,Mnx, (x = 0, 0.04 and 0.08) samples
. The Sr0.96Si2O2N2:Eu0.04 sample was a single-phase compound and crystallized with a triclinic structure with a space group of P1. For Sr0.96Si2O2N2:Eu0.04, the lattice constant are a = 7.11067(1) Å, b = 7.26255(0) Å, c = 7.28997(3) Å, and cell volume = 363.485(2) Å. All of the observed peaks are satisfied the reflection condition and were consistent with the lattice constants and cell volumes. Mn2+ was co-doped with Eu2+ and Fig. 2 shows both the experimental and the calculated X-ray powder diffraction patterns thereof (with x = 0, 0.04 and 0.08) along with the corresponding difference with standard of the Rietveld refinement. The Sr0.96Si2O2N2:Eu0.04,Mnx samples were almost pure phase with highly crystallinity. Table 1

Table 1. The crystallographic data of the sample for Mn occupation in Sr

table-icon
View This Table
| View All Tables
present the crystallographic data of the Mn-doped samples for the Mn occupation.

3.2 Analysis of photoluminescence properties

The influence of Mn2+ concentration on the luminescence properties of Sr0.96-xSi2O2N2:Eu0.04 was investigated by varying the Mn2+ concentration therein from 0 to 0.08. Figure 4
Fig. 4 PLE and PL spectra of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphors with various Mn contents. (PLE monitored at 540 nm and PL excited at 460 nm).
shows the excitation and emission spectra of the sample at room temperature. As can be seen in the photoluminescence spectrum, strong emission was observed at x = 0.02 under excitation by 460 nm. Excitation at 460 nm gives a green broad band emission that is centered at 540 nm. The emission band is associated with the 4f65d1 to 4f7 (5d-4f) transition of Eu2+. Co-doping of the phosphors with Mn efficiently enhanced the luminescence intensity, and the emission intensity of each Mn co-doped phosphor exceeded that of than original Sr0.96-xSi2O2N2:Eu0.04. In this study, the quantum efficiencies are also measured. The external quantum efficiency of Sr0.96-xSi2O2N2:Eu0.04Mn0.08 is 65.7%. It is higher than Sr0.96-xSi2O2N2:Eu0.04 which is 60.8%. The excitation band is suitable by UV or blue chip to excite.

Analysis of the luminescence decay curves confirms the cause of the increase in intensity in the Mn co-doped Sr0.96-xSi2O2N2:Eu0.04 phosphors. Emission at 540 nm was detected upon excitation at 460 nm. Interestingly, the decay time of the Sr0.96-xSi2O2N2:Eu0.04 phosphor is on the nanosecond scale (Fig. 5(a)
Fig. 5 Decay curves of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphor at 540 nm (a) x = 0 and (b) x = 0.02, 0.04, 0.06 and 0.08.
). When Mn2+ is added, the decay time scale is on the millisecond scale (Fig. 5(b)).

Thermoluminescence is a form of luminescence that is exhibited by crystalline materials that are excited at higher energy, such as delivered X-rays or ultraviolet irradiation, at low temperature. Previously stored energy from electromagnetic radiation or other ionizing radiation is re-emitted as the material is heated. Figure 6
Fig. 6 Thermoluminescence spectra of Sr0.96-xSi2O2N2:Eu0.04, Mnx phosphor x = 0 (solid) and x = 0.08 (dash).
plots thermoluminescence glow curves of the Sr0.96-xSi2O2N2:Eu0.04,Mnx (x = 0 and 0.08) phosphors. The two-dimensional TL glow curves of the Sr0.96-xSi2O2N2:Eu0.04,Mnx materials with x = 0 have a higher temperature band located at 107 °C, and the Sr0.96-xSi2O2N2:Eu0.04,Mnx materials with x = 0.08 exhibit a band at a lower temperature of 98 °C. The glow curves depend on the concentration of Mn2+. Sr0.96-xSi2O2N2:Eu0.04,Mnx (x = 0.08) has shallow trap vacancies. The dominant temperature is around 60-100°C, at which the material is visibly and persistently luminescent materials. It is explained that the Mn co-doped sample could use as the green luminescence material for AC LED.

To explain the thermoluminescence data, Fig. 7
Fig. 7 Fitting curve of thermoluminescence spectra of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphors with (a) x = 0 and (b) x = 0.08.
plots the fitting curve. The rate of detrapping is expressed as by the following equation [21

21. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976). [CrossRef]

].
dnhdt=Brnhnc
(1)
where the rate of the change of the electrons in the traps,
dndt=nc(Nn)Bnp
(2)
where nh is the concentration of vacancies, and nc is the concentration of electrons in the conduction band. If the concentration of electrons in traps is n, the density of traps is N, and the probability of electron trapping is B, then the rate of excitation of electrons in traps can be calculated using Eq. (1).

Figure 8
Fig. 8 Three-dimensional thermoluminescence spectra of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphor (a) x = 0 and (b) x = 0.08.
shows the three-dimensional (3D) TL emission spectra of Sr0.96-xSi2O2N2:Eu0.04,Mnx (x = 0 and 0.08) phosphors. The Sr0.96-xSi2O2N2:Eu0.04, Mnx sample with x = 0 has a broad emission band that is attributed to the characteristic 4f65d1 to 4f7 (5d-4f) transition of the Eu2+ ion (Fig. 8(a)). In the Sr0.96-xSi2O2N2:Eu0.04,Mnx sample with x = 0.08, the transition of Mn was appeared to confirm assignment of each peak by the energy level of Mn2+.

Figure 10
Fig. 10 Thermoluminescence spectra scheme of Sr0.96-xSi2O2N2:Eu0.04, Mnx phosphor, x = 0.08.
presents a possible electron trap mechanism, based on the 2D and 3D thermoluminescence spectra of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphor. The difference between the radii of Mn2+ and Sr2+ results in the easy formation of defects in this compound. The trap energy of Mn2+ is about 0.80 eV (from Table 1), and thermoluminescence emission occurs around 98 °C. A comparison with the decay time of the Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphors reasonably to explain the emission intensity when the Mn ion is substituted by Sr2+. The decay time of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphor is on the millisecond scale. As mentioned above, this is suitable for the AC LED. On this time scale, the flashing of the AC LED could be full in efficiently. Figure 11
Fig. 11 Electroluminescence spectra of Sr0.96-xSi2O2N2:Eu0.04,Mnx phosphor, x = 0.08 pumped by 460 nm-chip with 100V, 50mA and 60Hz.
displays a package of an AC LED with Sr0.96-xSi2O2N2:Eu0.04, Mnx phosphor. It is pumped by a 460 nm-chip with 100V, 50mA and 60Hz and emits a yellow green color with x = 0.2553 and y = 0.3152.

4. Conclusions

This study explained why the Mn-doping of Sr0.96-xSi2O2N2:Eu0.04 phosphor increases its intensity of emission. Thermoluminescence glow curves are adopted to predict the characteristics. The trap parameters are calculated from the glow curve and reveal that the decay time is suitable for AC LEDs. Additionally, 3D TL emission spectra reveal the characteristic of difference of coordination environment in Sr2+. This is the first time to develop a green phosphor for AC LEDs and prove the four different sites of Sr2+ through 3D TL emission spectra.

Acknowledgments

The authors would like to thank the National Science Council of Taiwan (Contracts Nos. NSC 97-2113-M-002-012-MY3, NSC 97-3114-M-002-005 and NSC 97-3114-M-002) and Forward Electronic Corporation (Taipei, Taiwan) for financially supporting this research.

References and links

1.

S. Tonzani, “Lighting technology: time to change the bulb,” Nature 459(7245), 312–314 (2009). [CrossRef] [PubMed]

2.

M. Yamada, Y. Narukawa, and T. Mukai, “Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well,” Jpn. J. Appl. Phys. 41(Part 2, No. 3A), L246–L248 (2002). [CrossRef]

3.

M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-enhanced white-light-emitting diode using a new red phosphor,” Jpn. J. Appl. Phys. 42(Part 2, No.1A/B), L20–L23 (2003). [CrossRef]

4.

R.-J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-Phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90(19), 191101 (2007). [CrossRef]

5.

K. Sakuma, N. Hirosaki, N. Kimura, M. Ohashi, Y. Yamamoto, R.-J. Xie, T. Suehiro, K. Asano, and D. Tanaka, “White light-emitting diode lamps using oxynitride and nitride phosphor materials,” IEICE Trans. Electron. E88-C, 2057–2064 (2005).

6.

N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R.-J. Xie, “Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 90, 061109 (2007).

7.

R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all nitride phosphor-converted white light emitting diode,” Phys. Status Solidi A 202(9), 1727–1732 (2005). [CrossRef]

8.

C. C. Yang, C.-M. Lin, Y. J. Chen, Y. T. Wu, S. R. Chuang, R. S. Liu, and S. F. Hu, “Highly stable three-band white light from an InGaN-based blue lightemitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90(12), 123503 (2007). [CrossRef]

9.

R.-J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma, “Optical properties of Eu2+ in α-SiAlON,” J. Phys. Chem. B 108(32), 12027–12031 (2004). [CrossRef]

10.

J. W. H. van Krevel, J. W. T. van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-SiAlON materials,” J. Solid State Chem. 165(1), 19–24 (2002). [CrossRef]

11.

Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors,” J. Alloy. Comp. 417(1-2), 273–279 (2006). [CrossRef]

12.

R.-J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater. 18(23), 5578–5583 (2006). [CrossRef]

13.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A promising class of novel LED conversion phosphors,” Chem. Mater. 17(12), 3242–3248 (2005). [CrossRef]

14.

V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, “Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater. 21(2), 316–325 (2009). [CrossRef]

15.

R. S. Liu, Y. H. Liu, and N. C. Bagkar, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett. 91(6), 061119 (2007). [CrossRef]

16.

Q. N. Fei, Y. H. Liu, T. C. Gu, and D. J. Wang, “Color improvement of white-light through Mn-enhancing yellow-green emission of SrSi2O2N2:Eu phosphor for white light emitting diodes,” J. Lumin. 131(5), 960–964 (2011). [CrossRef]

17.

X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and J. Zeng, “Luminescence and energy transfer of Mn2+ co-doped SrSi2O2N2:Eu2+ green-emitting phosphors,” Mater. Sci. Eng. B 164(1), 12–15 (2009). [CrossRef]

18.

O. Oeckler, F. Stadler, T. Rosenthal, and W. Schnick, “Real structure of SrSi2O2N2,” Solid State Sci. 9(2), 205–212 (2007). [CrossRef]

19.

J. A. Kechele, O. Oeckler, F. Stadler, and W. Schnick, “Structure elucidation of BaSi2O2N2 – A host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs,” Solid State Sci. 11(2), 537–543 (2009). [CrossRef]

20.

C. H. Hsu and C. H. Lu, “Microwave-hydrothermally synthesized (Sr1-x-yCexTby)Si2O2-δN2+μ phosphors: efficient energy transfer, structural refinement and photoluminescence properties,” J. Mater. Chem. 21(9), 2932–2939 (2011). [CrossRef]

21.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976). [CrossRef]

22.

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5-6), 625–661 (1997). [CrossRef]

23.

R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena, (World Scientific, 1997).

24.

I. Paolo, Localized States in Organic Semiconductors and Their Detection, (Universitat Potsdam, 2002).

25.

L. H. Jiang, Y. L. Zhang, C. Y. Li, R. Pang, J. Q. Hao, and Q. Su, “Thermoluminescence characteristics of rare-earth-doped LiCaBO3 phosphor,” J. Lumin. 128(12), 1904–1908 (2008). [CrossRef]

26.

V. Bachmann, T. Justel, A. Meijerink, C. Ronda, and P. J. Schmidt, “Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions,” J. Lumin. 121(2), 441–449 (2006). [CrossRef]

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optical Devices

History
Original Manuscript: May 1, 2012
Revised Manuscript: July 4, 2012
Manuscript Accepted: July 10, 2012
Published: July 23, 2012

Citation
Chiao-Wen Yeh, Ye Li, Jing Wang, and Ru-Shi Liu, "Appropriate green phosphor of SrSi2O2N2:Eu2+,Mn2+ for AC LEDs," Opt. Express 20, 18031-18043 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Tonzani, “Lighting technology: time to change the bulb,” Nature459(7245), 312–314 (2009). [CrossRef] [PubMed]
  2. M. Yamada, Y. Narukawa, and T. Mukai, “Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well,” Jpn. J. Appl. Phys.41(Part 2, No. 3A), L246–L248 (2002). [CrossRef]
  3. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-enhanced white-light-emitting diode using a new red phosphor,” Jpn. J. Appl. Phys.42(Part 2, No.1A/B), L20–L23 (2003). [CrossRef]
  4. R.-J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-Phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett.90(19), 191101 (2007). [CrossRef]
  5. K. Sakuma, N. Hirosaki, N. Kimura, M. Ohashi, Y. Yamamoto, R.-J. Xie, T. Suehiro, K. Asano, and D. Tanaka, “White light-emitting diode lamps using oxynitride and nitride phosphor materials,” IEICE Trans. Electron.E88-C, 2057–2064 (2005).
  6. N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R.-J. Xie, “Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett.90, 061109 (2007).
  7. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all nitride phosphor-converted white light emitting diode,” Phys. Status Solidi A202(9), 1727–1732 (2005). [CrossRef]
  8. C. C. Yang, C.-M. Lin, Y. J. Chen, Y. T. Wu, S. R. Chuang, R. S. Liu, and S. F. Hu, “Highly stable three-band white light from an InGaN-based blue lightemitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett.90(12), 123503 (2007). [CrossRef]
  9. R.-J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma, “Optical properties of Eu2+ in α-SiAlON,” J. Phys. Chem. B108(32), 12027–12031 (2004). [CrossRef]
  10. J. W. H. van Krevel, J. W. T. van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-SiAlON materials,” J. Solid State Chem.165(1), 19–24 (2002). [CrossRef]
  11. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors,” J. Alloy. Comp.417(1-2), 273–279 (2006). [CrossRef]
  12. R.-J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, “A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes,” Chem. Mater.18(23), 5578–5583 (2006). [CrossRef]
  13. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005). [CrossRef]
  14. V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, “Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater.21(2), 316–325 (2009). [CrossRef]
  15. R. S. Liu, Y. H. Liu, and N. C. Bagkar, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91(6), 061119 (2007). [CrossRef]
  16. Q. N. Fei, Y. H. Liu, T. C. Gu, and D. J. Wang, “Color improvement of white-light through Mn-enhancing yellow-green emission of SrSi2O2N2:Eu phosphor for white light emitting diodes,” J. Lumin.131(5), 960–964 (2011). [CrossRef]
  17. X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and J. Zeng, “Luminescence and energy transfer of Mn2+ co-doped SrSi2O2N2:Eu2+ green-emitting phosphors,” Mater. Sci. Eng. B164(1), 12–15 (2009). [CrossRef]
  18. O. Oeckler, F. Stadler, T. Rosenthal, and W. Schnick, “Real structure of SrSi2O2N2,” Solid State Sci.9(2), 205–212 (2007). [CrossRef]
  19. J. A. Kechele, O. Oeckler, F. Stadler, and W. Schnick, “Structure elucidation of BaSi2O2N2 – A host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs,” Solid State Sci.11(2), 537–543 (2009). [CrossRef]
  20. C. H. Hsu and C. H. Lu, “Microwave-hydrothermally synthesized (Sr1-x-yCexTby)Si2O2-δN2+μ phosphors: efficient energy transfer, structural refinement and photoluminescence properties,” J. Mater. Chem.21(9), 2932–2939 (2011). [CrossRef]
  21. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  22. S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas.27(5-6), 625–661 (1997). [CrossRef]
  23. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena, (World Scientific, 1997).
  24. I. Paolo, Localized States in Organic Semiconductors and Their Detection, (Universitat Potsdam, 2002).
  25. L. H. Jiang, Y. L. Zhang, C. Y. Li, R. Pang, J. Q. Hao, and Q. Su, “Thermoluminescence characteristics of rare-earth-doped LiCaBO3 phosphor,” J. Lumin.128(12), 1904–1908 (2008). [CrossRef]
  26. V. Bachmann, T. Justel, A. Meijerink, C. Ronda, and P. J. Schmidt, “Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions,” J. Lumin.121(2), 441–449 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited