## Static hyperspectral imaging polarimeter for full linear Stokes parameters |

Optics Express, Vol. 20, Issue 16, pp. 18194-18201 (2012)

http://dx.doi.org/10.1364/OE.20.018194

Acrobat PDF (916 KB)

### Abstract

A compact, static hyperspectral imaging linear polarimeter (HILP) based on a Savart interferometer (SI) is conceptually described. It improves the existing SI by replacing front polarizer with two Wollaston prisms, and can simultaneously acquire four interferograms corresponding to four linearly polarized lights on a single CCD. The spectral dependence of linear Stokes parameters can be recovered with Fourier transformation. Since there is no rotating or moving parts, the system is relatively robust. The interference model of the HILP is proved. The performance of the system is demonstrated through a numerical simulation, and the methods for compensating the imperfection of the polarization elements are described.

© 2012 OSA

## 1. Introduction

1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. **45**(22), 5453–5469 (2006). [CrossRef] [PubMed]

2. E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE **3121**, 28–34 (1997). [CrossRef]

8. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. **7**(11), 1245–1248 (2001). [CrossRef] [PubMed]

*σ*is spectral variable, (

*x*,

*y*) the spatial coordinates of image, S

_{0}the total intensity of the light, S

_{1}the difference between linear polarizations of 0° and 90°, S

_{2}the difference between linear polarizations of ± 45°, and S

_{3}the difference between right and left circular polarization.

10. J. S. Tyo and T. S. Turner Jr., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. **40**(9), 1450–1458 (2001). [CrossRef] [PubMed]

12. S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express **15**(12), 7393–7400 (2007). [CrossRef] [PubMed]

13. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. **24**(21), 1475–1477 (1999). [CrossRef] [PubMed]

16. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. **50**(8), 1170–1185 (2011). [CrossRef] [PubMed]

6. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. **48**(7), 1337–1346 (2009). [CrossRef] [PubMed]

17. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. **203**(1-2), 21–26 (2002). [CrossRef]

23. T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol. **22**(10), 105302 (2011). [CrossRef]

24. T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt. **58**(2), 154–159 (2011). [CrossRef]

1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. **45**(22), 5453–5469 (2006). [CrossRef] [PubMed]

3. D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE **5659**, 88–96 (2005). [CrossRef]

6. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. **48**(7), 1337–1346 (2009). [CrossRef] [PubMed]

## 2. Optical layout and interference model

*y*axis. The WP1 contains two orthogonally oriented birefringent crystal prisms with optic axes orientations of 0° and 90° with respect to the

*x*axis, respectively. The optic axes of two orthogonally oriented prisms in the WP2 are oriented at ± 45° respectively relative to the

*x*axis. An achromatic half-wave plate (HWP) with its fast axis oriented at 22.5° is placed behind the WP2. A Savart polariscope (SP), consists of two identical uniaxial crystal plates with orthogonally oriented principal sections, is positioned behind the HWP. The optic axes of the two plates are oriented at 45° relative to the

*z*axis and their projections on the

*x-y*plane is oriented at ± 45° respectively relative to the

*x*axis. A linear analyzer (LA) follows the group with its transmission axis at 90°. A single charge coupled device (CCD) is placed on the back focal plane of two imaging lenses (L2 and L3) with same focal length.

*y*axis, respectively. The 0° and 90° oriented electric fields are laterally sheared respectively by the SP into two pairs of equal-amplitude but orthogonally polarized components. The ± 45° oriented electric fields are first rotated 45° by the HWP and then laterally decomposed by the SP. All of the sheared directions are parallel to the

*x*axis. The LA extracts the identical linearly polarized components. Each pair of the equal-amplitude polarized components are reunited on the four parts of the CCD camera, and four interference images in the spatial domain can be recorded simultaneously [19

19. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. **281**(8), 2050–2056 (2008). [CrossRef]

*x*axis. Complete interferogram for the same object pixel can be collected by employing tempo-spatially mixed modulated mode (also called windowing mode) [19

19. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. **281**(8), 2050–2056 (2008). [CrossRef]

25. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. **44**(9), 1614–1624 (2005). [CrossRef] [PubMed]

21. X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express **18**(6), 5674–5680 (2010). [CrossRef] [PubMed]

*t*is the thickness of a single plate in the SP,

*f*is the focal length of the L2 and L3. With the use of Jones calculus, the four interference intensities for a single object pixel at position (

*x*,

*y*) can be calculated as where

*θ*= 0°, 90°, ± 45° denotes the angle of incident electric field vector

*x*axis. Fourier transformation of the interference terms in Eq. (3) can reconstruct input spectral intensity

## 3. Simulation and analysis

*μ*m × 16

*μ*m. Then each interferogram will occupy 128 × 512 pixels. According to the Nyquist sampling theorem, to avoid spectrum aliasing the sampling interval of the interferogram is no more than

*δ*Δ =

*λ*

_{min}/2 = 0.2

*μ*m. The maximum OPD is effectively limited by the Nyquist criterion that requires at least two data points per fringe period. Hence, if the interferogram is symmetrically recorded about zero OPD, the maximum OPD is Δ

_{max}= 256 ×

*δ*Δ = 51.2

*μ*m. Correspondingly, the highest spectral resolution with rectangular function is

*δλ*=

*λ*

^{2}/2Δ

_{max}, which is about 1.6 nm at the wavelength of 400 nm. The number of spectral bands is about 256. To realize compactness of the polarization elements, the WPs and SP can be made of calcite with high transmittance over a wide waveband. If the focal length of the L2 and L3 is

*f*= 80 mm, to fully utilize the spatial resolution of the CCD along the y direction, the apex angle of WPs should be 2° and the corresponding splitting angle is about 0.7°. To achieve maximum OPD along the

*x*direction, the lateral displacement produced by the SP should be

*d*= 1 mm, then the thickness of the single plate is

*t*= 6.5 mm. Therefore, the attainable incident angle of the polarization integration is ± 3° in the

*x*direction and ± 0.7° in the y direction. To increase the field of view, a CCD with larger spatial resolution is necessary.

## 4. Limitation and solution

### 4.1. Wollaston prisms

*y*axis. Usually the WPs are made of uniaxial birefringent crystal and the splitting angle is variable due to the dispersion in birefringence [26], which would lead to interference image blurring. Fortunately, the achromatization of the traditional WP by combining two WPs of similar and opposite chromatic dispersions are proposed [27

27. G. Wong, R. Pilkington, and A. R. Harvey, “Achromatization of Wollaston polarizing beam splitters,” Opt. Lett. **36**(8), 1332–1334 (2011). [CrossRef] [PubMed]

### 4.2. Savart polariscope

*x*axis and produce the needed OPD. Since the lateral shear also is the function of the extraordinary and ordinary indices, the OPD would vary as a function of wavenumber. Therefore, Fourier transform variable is nonlinear with respect to wavenumber for the Fourier transformation spectroscopy. However, the dispersion of the birefringent crystal can be compensated by using the Sellmeier equation and a reference wavenumber [16

16. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. **50**(8), 1170–1185 (2011). [CrossRef] [PubMed]

28. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. **130**(1-3), 1–6 (1996). [CrossRef]

22. C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. **35**(3), 366–368 (2010). [CrossRef] [PubMed]

29. W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett. **37**(13), 2580–2582 (2012). [CrossRef] [PubMed]

### 4.3. Achromatic half-wave plate

_{2}can be used for implementing this goal. As shown in Fig. 4 , the retardance weakly depends on the wavelength over the spectral region of 400 nm ~700 nm [30

30. Newport Corporation, http://www.newport.com/.

31. J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express **19**(9), 8557–8564 (2011). [CrossRef] [PubMed]

### 4.4. Selectable layout

18. C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. **43**(33), 6090–6094 (2004). [CrossRef] [PubMed]

17. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. **203**(1-2), 21–26 (2002). [CrossRef]

25. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. **44**(9), 1614–1624 (2005). [CrossRef] [PubMed]

*x*axis,

*β*is the apex angle of WP. As can be seen, the OPD is the function of apex angle and shift

*x*.

## 5. Summary

## Acknowledgments

## References and links

1. | J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. |

2. | E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE |

3. | D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE |

4. | N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE |

5. | S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express |

6. | F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. |

7. | R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. |

8. | R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. |

9. | D. Goldstein, |

10. | J. S. Tyo and T. S. Turner Jr., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. |

11. | J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes-Mueller imaging polarimeters,” Opt. Lett. |

12. | S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express |

13. | K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. |

14. | D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng. |

15. | M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express |

16. | J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. |

17. | C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. |

18. | C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. |

19. | C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. |

20. | T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt. |

21. | X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express |

22. | C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. |

23. | T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol. |

24. | T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt. |

25. | R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. |

26. | T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin. |

27. | G. Wong, R. Pilkington, and A. R. Harvey, “Achromatization of Wollaston polarizing beam splitters,” Opt. Lett. |

28. | B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. |

29. | W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett. |

30. | Newport Corporation, http://www.newport.com/. |

31. | J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express |

**OCIS Codes**

(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

(260.3160) Physical optics : Interference

(110.5405) Imaging systems : Polarimetric imaging

**ToC Category:**

Instrumentation, Measurement, and Metrology

**History**

Original Manuscript: May 22, 2012

Revised Manuscript: July 11, 2012

Manuscript Accepted: July 18, 2012

Published: July 24, 2012

**Citation**

Tingkui Mu, Chunmin Zhang, Chenling Jia, and Wenyi Ren, "Static hyperspectral imaging polarimeter for full linear Stokes parameters," Opt. Express **20**, 18194-18201 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18194

Sort: Year | Journal | Reset

### References

- J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
- E. A. Sornsin and R. A. Chipman, “Alignment and calibration of an infrared achromatic retarder using FTIR Mueller matrix spectropolarimetry,” Proc. SPIE3121, 28–34 (1997). [CrossRef]
- D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE5659, 88–96 (2005). [CrossRef]
- N. Hagen, A. M. Locke, D. S. Sabatke, E. L. Dereniak, and D. T. Sass, “Methods and applications of snapshot spectropolarimetry,” Proc. SPIE5432, 167–174 (2004). [CrossRef]
- S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express12(26), 6559–6573 (2004). [CrossRef] [PubMed]
- F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt.48(7), 1337–1346 (2009). [CrossRef] [PubMed]
- R. G. Nadeau, W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, and K. Messmer, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med.5(10), 1209–1212 (1999). [CrossRef] [PubMed]
- R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med.7(11), 1245–1248 (2001). [CrossRef] [PubMed]
- D. Goldstein, Polarized Light, 2 ed. (Marcel Dekker, 2003).
- J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt.40(9), 1450–1458 (2001). [CrossRef] [PubMed]
- J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes-Mueller imaging polarimeters,” Opt. Lett.31(19), 2858–2860 (2006). [CrossRef] [PubMed]
- S. Guyot, M. Anastasiadou, E. Deléchelle, and A. De Martino, “Registration scheme suitable to Mueller matrix imaging for biomedical applications,” Opt. Express15(12), 7393–7400 (2007). [CrossRef] [PubMed]
- K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett.24(21), 1475–1477 (1999). [CrossRef] [PubMed]
- D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002). [CrossRef]
- M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express15(20), 12792–12805 (2007). [CrossRef] [PubMed]
- J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt.50(8), 1170–1185 (2011). [CrossRef] [PubMed]
- C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun.203(1-2), 21–26 (2002). [CrossRef]
- C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt.43(33), 6090–6094 (2004). [CrossRef] [PubMed]
- C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun.281(8), 2050–2056 (2008). [CrossRef]
- T. Mu, C. Zhang, and B. Zhao, “Principle and analysis of a polarization imaging spectrometer,” Appl. Opt.48(12), 2333–2339 (2009). [CrossRef] [PubMed]
- X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express18(6), 5674–5680 (2010). [CrossRef] [PubMed]
- C. Zhang and X. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett.35(3), 366–368 (2010). [CrossRef] [PubMed]
- T. Mu, C. Zhang, W. Ren, and X. Jian, “Static dual-channel polarization imaging spectrometer for simultaneous acquisition of inphase and antiphase interference images,” Meas. Sci. Technol.22(10), 105302 (2011). [CrossRef]
- T. Mu, C. Zhang, W. Ren, L. Zhang, and X. Jian, “Interferometric verification for the polarization imaging spectrometer,” J. Mod. Opt.58(2), 154–159 (2011). [CrossRef]
- R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt.44(9), 1614–1624 (2005). [CrossRef] [PubMed]
- T. Mu, C. Zhang, and B. Zhao, “Analysis of the accuracy optical path difference and fringe location in polarization interference imaging spectrometer,” Acta Phys. Sin.58, 3877–3886 (2009).
- G. Wong, R. Pilkington, and A. R. Harvey, “Achromatization of Wollaston polarizing beam splitters,” Opt. Lett.36(8), 1332–1334 (2011). [CrossRef] [PubMed]
- B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun.130(1-3), 1–6 (1996). [CrossRef]
- W. Ren, C. Zhang, T. Mu, and H. Dai, “Spectrum reconstruction based on the constrained optimal linear inverse methods,” Opt. Lett.37(13), 2580–2582 (2012). [CrossRef] [PubMed]
- Newport Corporation, http://www.newport.com/ .
- J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express19(9), 8557–8564 (2011). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.