OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 16 — Jul. 30, 2012
  • pp: 18281–18286
« Show journal navigation

Temperature compensated microfiber Bragg gratings

Shuai Gao, Long Jin, Yang Ran, Li-Peng Sun, Jie Li, and Bai-Ou Guan  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18281-18286 (2012)
http://dx.doi.org/10.1364/OE.20.018281


View Full Text Article

Acrobat PDF (850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, temperature compensated microfiber Bragg grating (mFBG) is realized by use of a liquid with a negative thermo-optic coefficient. The effects of grating elongation and the index change of silica glass are compensated by refractive index change of the liquid through evanescent-field interaction. A reduced thermal sensitivity of 0.67 pm/°C is achieved, which is 1/15 in magnitude of the uncompensated counterparts. Further theoretical analysis demonstrates that temperature insensitivity can be obtained with different combinations of microfiber diameter and the refractive index/thermal optic coefficient of the employed liquid. The proposed method is promising due to the compactness and high flexibility of the device.

© 2012 OSA

1. Introduction

Fiber Bragg grating (FBG) is one of the most important photonic elements in fiber optic communication and sensing systems. Temperature compensation for FBGs have been investigated in the past years, for the requirement of minimizing the temperature/strain cross sensitivity for accurate measurement for FBG sensors, and the implementation of a highly environmentally stable optical filters in fiber communications. Temperature insensitivity has been achieved by bonding or embedding a FBG into a material with negative thermal expansion coefficients [1

1. R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett. 19(24), 1039–1040 (1983). [CrossRef]

3

3. T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett. 33(5), 417–419 (1997). [CrossRef]

] or two materials with different thermal-expansion coefficients [4

4. R. Kashyap, Fibre Bragg Gratings, 2nd ed. (Academic Press, 2009),Chap. 10.

, 5

5. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt. 34(30), 6859–6861 (1995). [CrossRef] [PubMed]

]. Complex mechanic structures, e. g., a lever configuration [6

6. G. W. Yoffe, P. A. Krug, F. Ouelette, and D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper WI4.

], have also been proposed. In these approaches, a thermally induced compressive stress over the grating is created due to the difference in thermal expansion, which effectively compensates the expansion of the grating. Alternatively, liquids and liquid crystals with negative thermo-optic coefficients can be used to alter the temperature sensitivity through the interaction with the mode field. This has been first implemented by using a liquid-core fiber with gratings inscribed in the fiber cladding [7

7. R. Kashyap, D. Williams, and R. P. Smith, “Novel liquid and liquid crystal cored optical fibre Bragg gratings,” in Optical Society of America Topical meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Williamsburg, USA, (ISBN 1 55752517 X), Opt. Soc. America, pp 25–7, 26–28 October 1997.

]. Recently, microstructured optical fibers with holy cladding have also been used for temperature compensation for FBGs by filling selected liquid into the air holes [8

8. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J. 8(7), 1073–1078 (2008). [CrossRef]

, 9

9. N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express 16(23), 19018–19033 (2008). [CrossRef] [PubMed]

]. However, the fabrication of the fibers is expensive and the requirement of geometrical precision is high. Furthermore, the connection between single-mode fibers and these specialty fibers could introduce considerable insertion loss.

2. Principle

3. Experimental result

The microfibers are fabricated by tapering standard single-mode fibers by means of the heat-and-draw method. The heat source is a 2 mm wide flame generated by the burning of butane. The heat source scans along fiber length back and forth while stretching the fiber with two computer-controlled linear stages. The geometrical parameters, including the microfiber diameter and waist length, are mainly determined by the moving speed and range of the linear stages. The moving speeds of the stages and the heat source have been optimized to minimize the transmission loss. The lengths of the uniform region and transition region of the fiber taper are 3 cm and 3.5 cm, respectively.

Bragg gratings are inscribed into the microfibers by use of a 193 nm ArF excimer laser and a phase mask [14

14. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011). [CrossRef] [PubMed]

]. The repetition rate is 200 Hz and the single pulse energy is 3 mJ. The grating pitch is 1089.21 nm. The grating length is 3 mm, which is determined by the 193 nm laser beam dimension. The calculated exposure dosage is estimated as 7.2 kJ. The growth of grating is monitored by use of a SLED light source and an optical spectrum analyzer (OSA), with a resolution of 0.05 nm.

The employed liquid for temperature compensation is ethanol with a purity of 99.8%. Its refractive index of the liquid at 20 °C is nliq = 1.36048 and the thermo-optic coefficient is ηliq = dnliq/dT = −4 × 10−4. Bragg grating is inscribed in a microfiber with a diameter of D = 5.2 μm, which has been optimized in advance to achieve temperature insensitivity. The measured temperature sensitivity of the uncompensated grating is 10 pm/°C. The microfiber is then immersed into the liquid and the reflection spectrum is measured under different temperatures. Figure 1(a)
Fig. 1 (a) Measured reflection spectra of the immersed mFBG with a diameter of 5.2 µm measured at 15°C and 60°C, respectively; (b) Measured wavelength shifts as a function of temperature for the immersed mFBGs with different diameters. The curves are linear fits for individual responses.
shows the measured reflection spectra at 15 and 60 °C, respectively. The reflection peak blue-shifts by only 30 pm and the spectral profile hardly changes. The weaker reflection band at the short wavelength side is a result of unapodized longitudinal profile of the index modulation. The spectral quality can be improved by enhancing the coupling strength as described in [15

15. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J. 4(1), 181–186 (2012). [CrossRef]

] and creating an apodized index modulation. Figure 1(b) shows the measured Bragg wavelength as a function of temperature. The temperature sensitivity is −0.67 pm/°C for the compensated mFBG and it is 1/15 in magnitude of the uncompensated counterparts. For comparison, the measured temperature responses for two mFBGs with different diameters are also shown in Fig. 1(b). The 10.2-μm mFBG presents a temperature sensitivity of 8.73 pm/°C, which is close to the uncompensated grating. In contrast, the 4-μm mFBG presents a sensitivity of −9.68 pm/°C, suggesting that the temperature sensitivity has been over-compensated.

4. Discussion

According to Eq. (3), the compensation capability of the liquid can be enhanced by two means: (1) using a liquid with larger ηliq; (2) enhancing the evanescent-field interaction, i. e., increasing dneffdnliq in contrast with dneffdnsi, which can be realized by decreasing microfiber diameter or using liquid with a RI closer to silica. As a result, temperature insensitivity can be obtained with different combinations of D, nliq and ηliq. Figure 4
Fig. 4 Calculated optimal diameters for temperature insensitivity as a function of the thermal-optic coefficient of liquid for different liquid refractive indexes.
shows the calculated optimal fiber diameters Dopt to achieve temperature sensitivity as a function of ηliq for different nliq. The optimal diameters are obtained by plotting the sensitivity-diameter curves as shown in Fig. 3 for individual nliq and ηliq. The curves represent the individual combinations of D, nliq and ηliq which can result in temperature insensitivity. The upper and lower regions of the individual curves correspond to positive and negative temperature sensitivities, respectively.

5. Conclusion

In conclusion, we have presented temperature-compensated mFBGs by immersing them into a liquid with a negative thermo-optic coefficient. The temperature insensitivity can be obtained due to the evanescent-field interaction between light and liquid. In our experiment, the temperature sensitivity has been reduced to its 1/15 for a 5.2-μm microfiber by immersing it into ethanol with a purity of 99.8%. The theoretical analysis suggests that temperature compensation for mFBGs can be achieved by using different liquids, by optimizing the fiber diameter. The proposed method can meet the requirement on stability in dense wavelength-division-multiplexing system and dispersion compensation. In addition, the FBGs in microfibers have presented advanced sensing characteristics for mechanic measurands, e. g., hydrostatic pressure [16

16. K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012). [CrossRef]

]. The proposed technique can effectively reduce the temperature cross sensitivity, which greatly benefit precise measurement.

Acknowledgments

This work was supported by National Natural Science Foundation of China (11104117 and 61177074), the Research Fund for the Doctoral Program of Higher Education (Grant No. 20114401110006), and the Fundamental Research Funds for the Central Universities (21609102).

References and links

1.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett. 19(24), 1039–1040 (1983). [CrossRef]

2.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg,” in 22nd European Conference on Optical Communication- ECOC'96, Oslo, Norway, September 15–19, 1996.

3.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett. 33(5), 417–419 (1997). [CrossRef]

4.

R. Kashyap, Fibre Bragg Gratings, 2nd ed. (Academic Press, 2009),Chap. 10.

5.

G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt. 34(30), 6859–6861 (1995). [CrossRef] [PubMed]

6.

G. W. Yoffe, P. A. Krug, F. Ouelette, and D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper WI4.

7.

R. Kashyap, D. Williams, and R. P. Smith, “Novel liquid and liquid crystal cored optical fibre Bragg gratings,” in Optical Society of America Topical meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Williamsburg, USA, (ISBN 1 55752517 X), Opt. Soc. America, pp 25–7, 26–28 October 1997.

8.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J. 8(7), 1073–1078 (2008). [CrossRef]

9.

N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express 16(23), 19018–19033 (2008). [CrossRef] [PubMed]

10.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]

11.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]

12.

L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhe Jiang University Press, Zhe Jiang, 2009), Chap. 1.

13.

J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999). [CrossRef]

14.

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011). [CrossRef] [PubMed]

15.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J. 4(1), 181–186 (2012). [CrossRef]

16.

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012). [CrossRef]

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 11, 2012
Revised Manuscript: July 3, 2012
Manuscript Accepted: July 23, 2012
Published: July 25, 2012

Citation
Shuai Gao, Long Jin, Yang Ran, Li-Peng Sun, Jie Li, and Bai-Ou Guan, "Temperature compensated microfiber Bragg gratings," Opt. Express 20, 18281-18286 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-16-18281


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983). [CrossRef]
  2. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg,” in 22nd European Conference on Optical Communication- ECOC'96, Oslo, Norway, September 15–19, 1996.
  3. T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997). [CrossRef]
  4. R. Kashyap, Fibre Bragg Gratings, 2nd ed. (Academic Press, 2009),Chap. 10.
  5. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt.34(30), 6859–6861 (1995). [CrossRef] [PubMed]
  6. G. W. Yoffe, P. A. Krug, F. Ouelette, and D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper WI4.
  7. R. Kashyap, D. Williams, and R. P. Smith, “Novel liquid and liquid crystal cored optical fibre Bragg gratings,” in Optical Society of America Topical meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Williamsburg, USA, (ISBN 1 55752517 X), Opt. Soc. America, pp 25–7, 26–28 October 1997.
  8. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008). [CrossRef]
  9. N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express16(23), 19018–19033 (2008). [CrossRef] [PubMed]
  10. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  11. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  12. L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhe Jiang University Press, Zhe Jiang, 2009), Chap. 1.
  13. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A16(8), 1992–1996 (1999). [CrossRef]
  14. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011). [CrossRef] [PubMed]
  15. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012). [CrossRef]
  16. K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited