## Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems |

Optics Express, Vol. 20, Issue 17, pp. 18911-18924 (2012)

http://dx.doi.org/10.1364/OE.20.018911

Acrobat PDF (2753 KB)

### Abstract

By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

© 2012 OSA

## 1. Introduction

6. S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A **83**(6), 062331 (2011). [CrossRef]

7. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A **73**(2), 022320 (2006). [CrossRef]

8. C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A **75**(3), 032314 (2007). [CrossRef]

9. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. **12**(11), 113026 (2010). [CrossRef]

10. V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A **74**(2), 022313 (2006). [CrossRef]

12. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A **78**(4), 042333 (2008). [CrossRef]

10. V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A **74**(2), 022313 (2006). [CrossRef]

12. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A **78**(4), 042333 (2008). [CrossRef]

13. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. **107**(11), 110501 (2011). [CrossRef] [PubMed]

14. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. **11**(6), 065003 (2009). [CrossRef]

16. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. **13**(1), 013043 (2011). [CrossRef]

17. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express **18**(26), 27938–27954 (2010). [CrossRef] [PubMed]

18. V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. **52**, 691–705 (2005). [CrossRef]

19. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. **13**(7), 073024 (2011). [CrossRef]

20. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics **4**(10), 686–689 (2010). [CrossRef]

21. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. **2**, 349 (2011). [CrossRef] [PubMed]

22. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett. **107**(17), 170404 (2011). [CrossRef] [PubMed]

23. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics **4**(12), 800–801 (2010). [CrossRef]

26. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett. **99**(19), 196102 (2011). [CrossRef]

24. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. **98**(23), 231104 (2011). [CrossRef]

27. L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A **83**(3), 032306 (2011). [CrossRef]

28. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. **108**(13), 130503 (2012). [CrossRef] [PubMed]

29. T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron. **47**(9), 1251–1256 (2011). [CrossRef]

16. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. **13**(1), 013043 (2011). [CrossRef]

17. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express **18**(26), 27938–27954 (2010). [CrossRef] [PubMed]

14. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. **11**(6), 065003 (2009). [CrossRef]

24. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. **98**(23), 231104 (2011). [CrossRef]

30. L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A **84**(3), 032320 (2011). [CrossRef]

## 2. Real-time SPAD characterization

31. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics **3**(12), 696–705 (2009). [CrossRef]

32. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. **82**(7), 071101 (2011). [CrossRef] [PubMed]

*η*), the dark count (

*P*) and afterpulse probabilities (

_{d}*P*). All these parameters can be characterized before the detector is put into operation, but may vary under different operational conditions. We have shown that it is possible to fully simultaneously characterize these three parameters in real-time, with the detector under normal operation as part of a quantum communication system [29

_{after}29. T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron. **47**(9), 1251–1256 (2011). [CrossRef]

33. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. **45**(7), 792–799 (2009). [CrossRef]

34. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett. **38**(23), 1468–1469 (2002). [CrossRef]

*m*between consecutive detections of the SPAD, regardless of whether it is a “true” count generated by the absorption of a single-photon (

*1-P*), or a noise count coming from a dark count (

_{np}*P*) or afterpulse (

_{dark}*P*) [29

_{a}(m)29. T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron. **47**(9), 1251–1256 (2011). [CrossRef]

*P*is the probability of having zero photons in a detection gate assuming a Poissonian photon number distribution, with

_{np}= exp(-μη)*μ*representing the average number of photons per pulse (or detector gate window) and

*η*, the overall detection efficiency. The terms

*α(m)*and

*β(m)*are expressed as functions of exponentials of multiples of the time interval [29

**47**(9), 1251–1256 (2011). [CrossRef]

*P*,

_{d}*P*,

_{0}*τ*and the product

*μη*are simultaneously obtained. The method can also determine the detector deadtime (at the A/D resolution) directly from the histogram.

*P*is obtained from the summation of

_{after}*P*from

_{a}*m*= 1 to infinity, and is calculated from the measured parameters as:

^{2}parameter of the fit was better than 0.99 for 3 × 10

^{4}detections (the closer to unity the more accurate the fit is), and the standard deviation, relative to the absolute measured value, is 0.3% for the overall detection efficiency and 5.0% for the total afterpulse probability for the same number of samples [29

**47**(9), 1251–1256 (2011). [CrossRef]

**47**(9), 1251–1256 (2011). [CrossRef]

## 3. Monitoring the SPAD against blinding attacks

### 3.1 After-gate attack

16. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. **13**(1), 013043 (2011). [CrossRef]

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. **74**(1), 145–195 (2002). [CrossRef]

35. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. **35**(12), 1956–1976 (1996). [CrossRef] [PubMed]

**47**(9), 1251–1256 (2011). [CrossRef]

33. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. **45**(7), 792–799 (2009). [CrossRef]

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. **74**(1), 145–195 (2002). [CrossRef]

**13**(1), 013043 (2011). [CrossRef]

*LD*) with a variable optical attenuator (VOA). She also has an electrical trigger source, which is used to synchronize the entire QKD system, as in a real setup. The photons sent by Alice are intercepted by Eve, which has one commercial SPAD module (

_{Alice}*η*= 15% and 2.5 ns gate width) with detection gates driven by Alice's trigger pulses. In a realistic QKD setup Alice’s laser would be pulsed, a fact that does not affect the results because every time Eve’s detector is opened (as dictated by Alice’s trigger) there is an average of

*μ*photons on that detection window, with probability of detection

*η*. Through the delay control to Bob, Eve is able to make sure her bright pulses or the bypassed photons (through the bypass control, see below for more details) arrive at Bob with the proper timing. Each detection event at Eve creates a 102.5 ns wide electrical pulse that, after compression to around 1 ns width, directly modulates her laser diode (

*LD*) to create a bright optical pulse. An additional simplification is that Eve is simply detecting the single-photons without any polarisation analysis, since Alice is only sending a single state of polarisation from BB84, a fact that does not affect the measurement results. Eve, therefore, prepares the attack pulse’s polarisation state according to a pseudo-random number generator (PRNG), simulating her basis choice that would be dependent on her random measurements on the states sent by Alice. Eve chooses between two maximally non-orthogonal polarisation states, corresponding to states on two different encoding bases. The binary random sequence, read from FPGA-based electronics, is applied as a bi-stable voltage to drive a LiNbO

_{Eve}_{3}polarization modulator (PM) [36

36. G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys. **11**(4), 045015 (2009). [CrossRef]

_{1}). The intensity of the bright pulses is adjusted with a variable optical attenuator (VOA) according to the avalanche threshold of Bob's detector outside the detection gate, previously characterized at a low repetition rate by scanning the optical pulse relative to the temporal gate window at different optical powers.

*D*). We are using a single detector to demonstrate the attack and the application of the real-time monitoring system against eavesdropping. Depending on Eve’s basis choice, hers and Bob’s bases may agree, and the bright pulse causes the detector to click; otherwise, it causes no detection event. A delayed version of the synchronization signal (Δt

_{Bob}_{2}) is used to trigger the SPAD under attack. Eve sends the bright pulses such that they arrive just after the end of Bob's detector gate windows, adjusted with the delay line Δt

_{2}. The A/D board of our monitoring system is connected to the electrical output of Bob’s detector and to the trigger signal. The statistics of times between consecutive detection events are acquired, using the number of opened gates as the timebase, and analysed in real-time.

28. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. **108**(13), 130503 (2012). [CrossRef] [PubMed]

28. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. **108**(13), 130503 (2012). [CrossRef] [PubMed]

### 3.2 Faint after-gate attack

_{high}/η

_{low}). The statistical distribution of times between consecutive detection events was once again collected under attack, with Eve intercepting 100% of the photons sent by Alice with detector deadtime removed.

### 3.3 Discussion on the performance against general blinding techniques

14. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. **11**(6), 065003 (2009). [CrossRef]

17. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express **18**(26), 27938–27954 (2010). [CrossRef] [PubMed]

20. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics **4**(10), 686–689 (2010). [CrossRef]

21. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. **2**, 349 (2011). [CrossRef] [PubMed]

19. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. **13**(7), 073024 (2011). [CrossRef]

38. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt. **41**(12), 2435–2444 (1994). [CrossRef]

**47**(9), 1251–1256 (2011). [CrossRef]

## 4. Monitoring against the time-shift attack

12. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A **78**(4), 042333 (2008). [CrossRef]

_{A}and D

_{B}. The system clock is synchronized such that the single photons reach D

_{A}at temporal position

*τ*relative to the trigger signal and the device exhibits detection efficiency

_{1}*η*. However, Eve randomly routes each transmitted photon through one of two paths of an optical delay line, without interception. For the second delay, corresponding to time

_{A1}*τ*, the efficiency of the detector will be different and smaller (

_{2}*η*). Now assume that the efficiency temporal profile for D

_{A2}_{B}is not matched with D

_{A}and, for time

*τ*, the value is high (

_{2}*η*), whereas for time

_{B2}*τ*, it is lower (

_{1}*η*). This implies in a higher probability that, given a certain basis chosen by Bob, one of the detectors has a greater probability of triggering an avalanche, according to the time-shift imposed by Eve, which will posteriorly provide her with partial information (or full if the mismatch is large enough) about the key after the bases reconciliation.

_{B1}39. J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express **20**(15), 16339–16347 (2012). [CrossRef]

## 7. Conclusion

## Acknowledgments

## References and links

1. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. |

2. | H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science |

3. | V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. |

4. | D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. |

5. | S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt. |

6. | S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A |

7. | N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A |

8. | C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A |

9. | F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. |

10. | V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A |

11. | B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput. |

12. | Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A |

13. | N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. |

14. | V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. |

15. | S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express |

16. | C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. |

17. | L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express |

18. | V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. |

19. | H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. |

20. | L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics |

21. | I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. |

22. | I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett. |

23. | Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics |

24. | Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. |

25. | L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett. |

26. | Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett. |

27. | L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A |

28. | H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. |

29. | T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron. |

30. | L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A |

31. | R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics |

32. | M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. |

33. | J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. |

34. | A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett. |

35. | S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. |

36. | G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys. |

37. | S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. |

38. | J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt. |

39. | J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express |

**OCIS Codes**

(270.5570) Quantum optics : Quantum detectors

(040.1345) Detectors : Avalanche photodiodes (APDs)

(270.5565) Quantum optics : Quantum communications

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: May 22, 2012

Revised Manuscript: July 24, 2012

Manuscript Accepted: July 28, 2012

Published: August 2, 2012

**Citation**

Thiago Ferreira da Silva, Guilherme B. Xavier, Guilherme P. Temporão, and Jean Pierre von der Weid, "Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems," Opt. Express **20**, 18911-18924 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18911

Sort: Year | Journal | Reset

### References

- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
- H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science283(5410), 2050–2056 (1999). [CrossRef] [PubMed]
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009). [CrossRef]
- D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).
- S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).
- S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011). [CrossRef]
- N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006). [CrossRef]
- C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007). [CrossRef]
- F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010). [CrossRef]
- V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006). [CrossRef]
- B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).
- Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008). [CrossRef]
- N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011). [CrossRef] [PubMed]
- V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys.11(6), 065003 (2009). [CrossRef]
- S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011). [CrossRef] [PubMed]
- C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011). [CrossRef]
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010). [CrossRef] [PubMed]
- V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt.52, 691–705 (2005). [CrossRef]
- H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011). [CrossRef]
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010). [CrossRef]
- I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011). [CrossRef] [PubMed]
- I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011). [CrossRef] [PubMed]
- Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010). [CrossRef]
- Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011). [CrossRef]
- L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011). [CrossRef]
- Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011). [CrossRef]
- L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011). [CrossRef]
- H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108(13), 130503 (2012). [CrossRef] [PubMed]
- T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011). [CrossRef]
- L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011). [CrossRef]
- R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009). [CrossRef]
- M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011). [CrossRef] [PubMed]
- J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009). [CrossRef]
- A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002). [CrossRef]
- S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996). [CrossRef] [PubMed]
- G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009). [CrossRef]
- S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).
- J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994). [CrossRef]
- J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express20(15), 16339–16347 (2012). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.