## Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator |

Optics Express, Vol. 20, Issue 17, pp. 19214-19225 (2012)

http://dx.doi.org/10.1364/OE.20.019214

Acrobat PDF (4945 KB)

### Abstract

We experimentally, analytically, and numerically demonstrate the nonlinear photo-induced plasmon-assisted magnetic response that occurs with metallic nanoparticles in aqueous solution. We measure the scattered spectra from solutions of gold nanospheres (10^{−7} fill factor) and observe appreciable changes when simultaneously applying DC magnetic fields *and* illuminating samples with light. The magnetic response is achieved using light from a solar simulator at unprecedented low illumination intensities (< 1W/cm^{2}) and is sustained when the magnetic field is removed. Distinctly different behavior is observed depending on the circular-polarization handedness given a fixed magnetic field. Nanoparticle aggregation is more likely to occur when the circular-polarization trajectory opposes the solenoid current that produces the magnetic field. Using Mie’s theoretical solution, we show how vortex orbital surface currents lead to an increased and anisotropic electrical conductivity, which shifts the scattered spectra in agreement with experimental results. The single-nanoparticle plasmon-induced magnetization, which couples the scattered and incident electric fields, changes sign with orthogonal circular-polarization handedness.

© 2012 OSA

## 1. Introduction

1. J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga. **20**, 442–446 (1972). [CrossRef]

3. D. Rozas, C. T. Law, and G. A. Swartzlander Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B **14**, 3054–3065 (1997). [CrossRef]

4. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. **90**, 107404 (2003). [CrossRef] [PubMed]

10. P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E **68**, 066604 (2003). [CrossRef]

11. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express **13**, 7760–7771 (2005). [CrossRef] [PubMed]

7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett. **83**, 2713–2715 (2003). [CrossRef]

12. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. **7**, 1996–1999 (2007). [CrossRef]

13. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe_{3}O_{4} nanoparticles,” Nano Lett. **5**, 379–382 (2005). [CrossRef] [PubMed]

14. H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett. **92**, 233103 (2008). [CrossRef]

15. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express **19**, 9607–9616 (2011). [CrossRef] [PubMed]

16. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat. **9**, 193–204 (2010). [CrossRef]

8. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express **14**, 1557–1567 (2006). [CrossRef] [PubMed]

17. L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett. **104**, 083903 (2010). [CrossRef] [PubMed]

17. L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett. **104**, 083903 (2010). [CrossRef] [PubMed]

18. S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A **79**, 043819 (2009). [CrossRef]

19. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett. **11**, 3927–3934 (2011). [CrossRef] [PubMed]

20. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B **73**, 235432 (2006). [CrossRef]

21. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express **13**, 8372–8379 (2005). [CrossRef] [PubMed]

22. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale **4**, 76–90 (2012). [CrossRef]

23. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. **103**, 186801 (1990). [CrossRef]

28. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B **84**, 035447 (2011). [CrossRef]

29. Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B. **27**, 2165–2173 (2010). [CrossRef]

30. R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials **303**, L1–L4 (2006). [CrossRef]

*reduction*of light scattering or the samples undergo polarization-dependent pattern formation that results in

*enhanced*scattering at the plasmon absorption wavelengths.

^{−7}), the unprecedented low illumination intensities (<1W/cm

^{2}), and the use of incoherent unpolarized light from a broad-band lamp or solar simulator in our experiments. Our results indicate that 1) the surrounding aqueous solution plays a strong role in the collective dynamics and 2) the interaction between particles is nonnegligible.

**M**

*∝*

_{nl}*i*(

**E**×

**E**

^{*}). We numerically evaluate the first-order correction using Mie theory, which changes sign with orthogonal circular-polarization handedness. In Sec. 5 we put our experimental and numerical results in context and summarize our results.

## 2. Experimental set-up and results

*λ*= 546 nm (NanoXact from Nanocomposix). The lamp intensity is less than 1W/cm

^{2}at the sample. The sample containers sit at the center of a solenoid whose axis is aligned with the incident lamp light. A visible-wavelength anti-reflection-coated polarizer and achromatic waveplate are placed to produce left- and right-handed circularly-polarized (LHCP and RHCP) or linearly-polarized (LINP) light. A fiber-coupled spectrometer measures the scattered light spectra at approximately 135° from the incident angle. The convention we use assumes that the helical direction of the LHCP (RHCP) electric field vector rotates clockwise (counter-clockwise) when viewed in the direction of the light propagation. The magnetic field produced by the solenoid points in the direction of light propagation.

31. D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature **451**, 549–552 (2008). [CrossRef] [PubMed]

*μ*T magnetic fields when samples are illuminated with LHCP. Above the application of a 200-

*μ*T magnetic field, the relative changes in scattering spectra have similar shapes. If the nanoparticles do not aggregate, they reorient and undergo self-assembly, the signature of which is a relative increase in scattering intensity at the plasmon resonance.

**M**

*∼*

_{nl}*i*(

**E**×

**E**

^{*}) where

**E**is the total electric field, which illustrates how a rotating electric field magnetizes a non-magnetic conducting nanoparticle by producing plasmons with orbital angular momentum.

## 3. Analysis of the scattering due to orbital surface currents

30. R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials **303**, L1–L4 (2006). [CrossRef]

**v**

_{0}is zero; in fact, we assert that the

*orbital*DC currents manifest in the optical scattering as a signature of the photo-induced magnetic fields measured here. The incident circularly-polarized plane wave in spherical coordinates is

*λ*is the wavelength,

*ε*is the permittivity of the material surrounding the conducting sphere, and the ± sign determines the orthogonal polarization handedness of the circularly-polarized light. The polarization-dependent geometric phase exp(±

^{b}*iϕ*) gives rise to polarization-dependent vortex flows in the scattered fields [17

17. L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett. **104**, 083903 (2010). [CrossRef] [PubMed]

*P*is the first associated Legendre polynomial of order

_{l}*l*,

*ξ*is the Riccati-Hankel function of the first kind, and ′ denotes differentiation with respect to the argument. The coefficients

*and*

^{TE}B*are determined by the TE and TM boundary conditions of the problem, respectively*

^{TM}B*ε*is the permittivity and

*σ*is the specific conductivity. The superscripts (

*a*) and (

*b*) identify the conducting sphere and the surrounding material, respectively.

**J̃**[Eq. (1)] in Maxwell’s equations, we see that loops of azimuthal electrical currents and nonzero

**v**

_{0}on the surface of the nanoparticles lead to modified, anisotropic coefficients for

*k*. If we assume that

^{a}**v**

_{0}=

*v*

_{0}

*ϕ̂*, then the corresponding conductivity tensor

*σ*becomes The conductivity tensor increases anisotropically due to the existence of surface current loops. We do not provide a closed solution to the analytical scattering problem, however our claim of an increased effective conductivity agrees with our experimental measurements. In Fig. 4 we plot the scattering cross-section of the nanocolloid solution with varying electrical conductivity. The corresponding changes in the scattering spectra that arise due to an increased effective conductivity agree with experimental results.

_{j,k}## 4. The nonlinear magnetization M_{nl}

_{nl}

30. R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials **303**, L1–L4 (2006). [CrossRef]

**M**

*from the nonlinear current density*

_{nl}**J**

*(*

_{nl}**r**,

*t*) = ∇ ×

**M**

*, where Equation 9 points to the source of*

_{nl}**J**

*: the evanescent electric fields associated with the oscillating surface charge density. Even when there are no free charges,*

_{nl}**J**

*is nonzero because ∇ ·*

_{nl}**E**≠ 0. By evaluating individual terms numerically, we observe that the right square-bracketed term of Eq. (11), which is associated with a ponderomotive force, has a significantly weaker contribution compared to the first term, from which Hertel extracts the plasmon-induced magnetization, where

**E**is the total electric field. In Fig. 5 we evaluate Eq. (12) using the incident

**E**

*= (*

_{i}*E*,

_{i,r}*E*,

_{i,}_{θ}*E*) [Eq. (3)] and scattered

_{i,ϕ}**E**

*= (*

_{s}*E*,

_{s,r}*E*,

_{s,θ}*E*) [Eq. (4)] electric fields, i.e., and where

_{s,ϕ}**J**

*. The evaluation of Eq. (13) yields a pure real-valued numerical result, which represents the first-order non-zero nonlinear DC correction to Maxwell’s equations.*

_{nl}**M**

*is not polarization-dependent [See Fig. 5]. The vortex energy flows associated with the azimuthal magnetization receive considerable attention [21*

_{nl,ϕ}21. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express **13**, 8372–8379 (2005). [CrossRef] [PubMed]

22. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale **4**, 76–90 (2012). [CrossRef]

21. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express **13**, 8372–8379 (2005). [CrossRef] [PubMed]

^{TM}**E**

*only include the*

_{s}*-coefficient modes [Eq. (5)]. We deduce this claim by inspection of Eqs. 3 and 4, knowing that the magnetic longitudinal dipole decomposes into the odd-valued radial and the even-valued polar magnetization vectors [Eq. (14)]. The product of two even or two odd-order Legendre polynomials yields an even-ordered Legendre polynomial, the product of an even and odd-ordered Legendre polynomial yields an odd-ordered Legendre polynomial, and multiplication or division by sin*

^{TM}B*θ*changes the order from even to odd or vice versa.

31. D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature **451**, 549–552 (2008). [CrossRef] [PubMed]

33. N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem. **98**, 2143–2147 (1994). [CrossRef]

## 5. Conclusion and additional discussion

*μ*T-strength DC magnetic fields, we observe relative changes in the scattering spectra that indicate an increase in the nanoparticle electrical conductivity. The subsequent scattering from the self-assembled nanocolloid is highly polarization-dependent. When samples are illuminated with circular-polarized light whose trajectory is aligned opposite to the solenoid current that produces the magnetic field, samples aggregate.

^{−7}) and the unprecedented low illumination intensities (<1W/cm

^{2}). The measured trends are repeatable and highly concentration-dependent. At higher concentrations the sample PVP coating degrades more rapidly when simultaneously applying a DC magnetic field and illuminating samples with circularly-polarized light.

34. C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt. **16**, 661–694 (2004). [CrossRef]

29. Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B. **27**, 2165–2173 (2010). [CrossRef]

## References and links

1. | J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga. |

2. | N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett. |

3. | D. Rozas, C. T. Law, and G. A. Swartzlander Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B |

4. | A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. |

5. | M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. |

6. | V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B |

7. | I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett. |

8. | A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express |

9. | J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” |

10. | P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E |

11. | D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express |

12. | V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. |

13. | H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe |

14. | H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett. |

15. | S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express |

16. | J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat. |

17. | L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett. |

18. | S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A |

19. | S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett. |

20. | B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B |

21. | M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express |

22. | S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale |

23. | M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. |

24. | V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. |

25. | V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B |

26. | O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun. |

27. | A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett. |

28. | N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B |

29. | Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B. |

30. | R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials |

31. | D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature |

32. | M. Born and E. Wolf, |

33. | N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem. |

34. | C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt. |

**OCIS Codes**

(190.5940) Nonlinear optics : Self-action effects

(260.0260) Physical optics : Physical optics

(160.4236) Materials : Nanomaterials

**ToC Category:**

Metamaterials

**History**

Original Manuscript: May 2, 2012

Revised Manuscript: June 29, 2012

Manuscript Accepted: July 25, 2012

Published: August 8, 2012

**Citation**

N. D. Singh, M. Moocarme, B. Edelstein, N. Punnoose, and L. T. Vuong, "Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator," Opt. Express **20**, 19214-19225 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19214

Sort: Year | Journal | Reset

### References

- J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga.20, 442–446 (1972). [CrossRef]
- N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).
- D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997). [CrossRef]
- A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003). [CrossRef] [PubMed]
- M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005). [CrossRef] [PubMed]
- V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001). [CrossRef]
- I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003). [CrossRef]
- A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006). [CrossRef] [PubMed]
- J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).
- P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003). [CrossRef]
- D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13, 7760–7771 (2005). [CrossRef] [PubMed]
- V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007). [CrossRef]
- H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005). [CrossRef] [PubMed]
- H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008). [CrossRef]
- S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express19, 9607–9616 (2011). [CrossRef] [PubMed]
- J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010). [CrossRef]
- L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010). [CrossRef] [PubMed]
- S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009). [CrossRef]
- S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011). [CrossRef] [PubMed]
- B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006). [CrossRef]
- M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13, 8372–8379 (2005). [CrossRef] [PubMed]
- S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012). [CrossRef]
- M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990). [CrossRef]
- V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992). [CrossRef] [PubMed]
- V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993). [CrossRef]
- O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997). [CrossRef]
- A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005). [CrossRef]
- N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011). [CrossRef]
- Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010). [CrossRef]
- R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials303, L1–L4 (2006). [CrossRef]
- D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008). [CrossRef] [PubMed]
- M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 760–771.
- N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994). [CrossRef]
- C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.