OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20090–20095
« Show journal navigation

170 GHz uni-traveling carrier photodiodes for
InP-based photonic integrated circuits

E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20090-20095 (2012)
http://dx.doi.org/10.1364/OE.20.020090


View Full Text Article

Acrobat PDF (939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the capability of fabricating extremely high-bandwidth Uni-Traveling Carrier Photodiodes (UTC-PDs) using techniques that are suitable for active-passive monolithic integration with Multiple Quantum Well (MQW)-based photonic devices. The devices achieved a responsivity of 0.27 A/W, a 3-dB bandwidth of 170 GHz, and an output power of −9 dBm at 200 GHz. We anticipate that this work will deliver Photonic Integrated Circuits with extremely high bandwidth for optical communications and millimetre-wave applications.

© 2012 OSA

1. Introduction

Wireless millimetre-wave photonic technology capable of operating at carrier frequencies around 60 GHz has been successfully demonstrated [1

1. A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3071–3082 (2010). [CrossRef]

]. The ever-increasing demand for high data rates will eventually push carrier frequencies above 100 GHz where limited solutions are currently available [2

2. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010). [CrossRef]

4

4. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Int. J. Infrared Millim. Waves 32(2), 143–171 (2011). [CrossRef]

]. Photomixing in Uni-Traveling Carrier Photodiodes (UTC-PDs) has been proposed and demonstrated as a promising technique for frequency tunable millimetre-wave and sub millimetre-wave photonically enabled systems [5

5. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004). [CrossRef]

9

9. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012). [CrossRef] [PubMed]

]. This generation scheme in combination with Photonic Integrated Circuit (PIC) technology can offer compact, tunable and highly efficient transmitters where the photodetector can be integrated with tunable lasers, amplifiers and modulators on the same photonic chip. The field of PIC technology has recently seen tremendous evolution. However, active-passive integration that allows Distributed Feedback (DFB) lasers, Electro-Absorption Modulators (EAMs), Semiconductor Optical Amplifiers (SOA) and Multimode Interference (MMI) couplers on the same photonic chip has so far delivered PICs with low-bandwidth photodiodes [10

10. F. Xia, S. Dutta, and S. R. Forrest, “A monolithically integrated optical heterodyne receiver,” IEEE Photon. Technol. Lett. 17(8), 1716–1718 (2005). [CrossRef]

], [11

11. R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400 Gbit/s (10 channel × 40 Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41(6), 347–349 (2005). [CrossRef]

]. The main limitation for the bandwidth of these photodiodes has been the common MQW epitaxy used in active sections. An early demonstration of the integration of UTC-PDs on a MQW platform produced photodiodes capable of detecting 40 Gb/s signals [12

12. J. W. Raring, E. J. Skogen, C. S. Wang, J. S. Barton, G. B. Morrison, S. Demiguel, S. P. Denbaars, and L. A. Coldren, “Design and demonstration of novel QW intermixing scheme for the integration of UTC-type photodiodes with QW-based components,” IEEE J. Quantum Electron. 42(2), 171–181 (2006). [CrossRef]

]. Recently, we demonstrated Coplanar Waveguide (CPW)-integrated photodiodes fabricated using techniques compatible with active-passive integration that were optimized for generation at 120 GHz [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

]. These devices demonstrated a bandwidth of up to 110 GHz and a generated output power of more than 1 mW at 120 GHz together with a flat frequency response in the F-Band (90-140 GHz).

In this paper we demonstrate extremely high-bandwidth, CPW-integrated photodiodes fabricated using the same growth and fabrication steps as in [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

]. The devices achieved a responsivity of 0.27 A/W at a wavelength of 1.55 μm, a 3-dB bandwidth of 170 GHz, and a generated output power of up to −5 dBm at 170 GHz and −9 dBm at 200 GHz. Although high bandwidth InP photodiodes have been previously demonstrated [7

7. J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010). [CrossRef]

], [14

14. J.-W. Shi, F.-M. Kuo, M. Rodwell, and J. E. Bowers, “Ultra-high speed (270 GHz) near-ballistic uni-traveling-carrier photodiode with very-high saturation current (17 mA) under a 50 Ω load,” in Proc. 2011 IEEE Photonics Conference (PHO), 21–22, 9–13 Oct. 2011.

], to the best of our knowledge, this is the first time that photodiodes fabricated using active-passive PIC technology have demonstrated such a high 3-dB bandwidth.

2. Growth and fabrication

Compared to stand-alone devices, a thick (> 1 μm) cap layer must be present at the top of the UTC-PD that needs also to act as the p-contact. The thickness of this layer is critical in order to achieve good confinement in the active sections and low propagation losses in the passive sections of the PIC. However, this thick layer imposes a high series resistance for the photodiode that results in a reduced 3-dB RC-limited bandwidth and more severe thermal effects. This trade-off was taken into consideration for the design of photodetectors such as those presented in [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

] where the target was the optimisation of the device as a 120 GHz emitter. The same simulation procedure that was followed in [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

] resulted in a photodiode active area that is only limited in dimensions from the fabrication procedure. Devices with an active area of 2 × 10 μm2 and the same epitaxy as in [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

] were fabricated for 3-dB bandwidth maximisation.

The waveguide CPW-integrated UTC-PDs, as shown in Fig. 1
Fig. 1 Image of Coplanar Waveguide (CPW)-integrated UTC-PD chip with 2 × 10 μm2 active area and a 70 μm long optical input waveguide.
, are fabricated on a semi-insulating InP substrate using gas source molecular beam epitaxy. The fabrication of these devices was implemented by monolithically integrating passive waveguides with photodiode active sections in two growth steps. Initially, passive waveguide sections and the PD absorber and collector layers were grown. In the second step a regrowth of the top cladding and p-contact layers was performed. The fabrication process is described in more detail in [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

] and used techniques that are compatible with the integration of MQW active sections and the realization of shallow ridge laser and SOA waveguides.

3. Experimental arrangement

In order to assess the frequency response of the CPW-integrated photodiodes, an experimental arrangement using various CPW-type Ground-Signal-Ground (GSG) probes and downconverting mixers was used. A heterodyne signal generated from two lasers was amplified using an Erbium Doped Fibre Amplifier (EDFA) and fed into the photodiode through a lensed fiber with a 3 μm spot size. The signal was measured directly with a power meter for frequencies up to 90 GHz using DC–50 GHz, V-band (50-75 GHz) and W-band (75-110 GHz) GSG probes. Above 90 GHz, F-band (90-140 GHz) and G-band (140-220 GHz) probes and characterised sub-harmonic mixers were used and the Intermediate Frequency (IF) signal level was measured with a spectrum analyser. The experimental arrangement for these measurements is given in Fig. 2
Fig. 2 Experimental arrangement used for measurements in different frequency bands ranging from 90 to 220 GHz. Measurements up to 50 GHz were performed without a sub-harmonic down-converting mixer. For measurements up to 90 GHz, a calibrated power meter was used instead of the sub-harmonic mixer.
.

4. Results and discussion

Saturation measurements were also performed in the G-Band using the same experimental arrangement. The generated power at 150, 170, 200 and 220 GHz was measured as a function of the optical input power. The results, corrected for the probe insertion loss and the mixer conversion loss are given in Fig. 5
Fig. 5 Power saturation in the G-Band (140-220 GHz) from UTC-PDs with 2 × 10 μm2 active area dimensions. Reverse bias voltage was 3 V for all measurements.
. To make sure that the highest generated power level was not limited by the mixer saturation level, the millimetre-wave power at 14 dBm optical input power was also confirmed with a measurement using a free space Terahertz power meter, an experimental arrangement similar to the one used in [13

13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

]. A good agreement was found for the maximum millimetre-wave output power levels between the two different experimental arrangements.

The device achieved substantial output power levels in the millimetre-wave range with −2 dBm at 150 GHz, −5.5 dBm at 170 GHz, −9 dBm at 200 GHz and even −11 dBm at 220 GHz. As the optical input power increases from 7 dBm to 14 dBm, a decreasing power difference was observed between the curves that correspond to points within the bandwidth of the device (150 and 170 GHz) and those above the 3-dB bandwidth (200 and 220 GHz). This can be attributed to a further improvement of the transit-time limited bandwidth by the introduction of a quasi-field that further accelerates electrons as previously explained in [16

16. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron . E83-C(6), 938–949 (2000).

]. Although the power levels presented here are lower than current state-of-the-art high bandwidth photodiodes measured with a 50 Ω load [8

8. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012). [CrossRef]

], [14

14. J.-W. Shi, F.-M. Kuo, M. Rodwell, and J. E. Bowers, “Ultra-high speed (270 GHz) near-ballistic uni-traveling-carrier photodiode with very-high saturation current (17 mA) under a 50 Ω load,” in Proc. 2011 IEEE Photonics Conference (PHO), 21–22, 9–13 Oct. 2011.

], to the best of our knowledge, these are the first 170 GHz photodiodes fabricated using techniques that are suitable for monolithic integration with active and passive MQW-based devices.

6. Conclusions

Acknowledgments

This work was supported by the European Commission within the framework of the European project iPHOS (grant agreement no: 257539)) and by the Engineering and Physical Sciences Research Council (EPSRC) under Grant Reference EP/J017671/1. The authors would like to thank Genevieve Glastre for useful discussions. G. Carpintero, on Sabbatical leave at University College London, acknowledges support by Fundación Caja Madrid through a mobility grant. E. Rouvalis acknowledges support by the EPSRC under the EPSRC Doctoral Prize Fellowship scheme.

References and links

1.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3071–3082 (2010). [CrossRef]

2.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010). [CrossRef]

3.

H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011). [CrossRef]

4.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Int. J. Infrared Millim. Waves 32(2), 143–171 (2011). [CrossRef]

5.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004). [CrossRef]

6.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010). [CrossRef] [PubMed]

7.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010). [CrossRef]

8.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012). [CrossRef]

9.

M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012). [CrossRef] [PubMed]

10.

F. Xia, S. Dutta, and S. R. Forrest, “A monolithically integrated optical heterodyne receiver,” IEEE Photon. Technol. Lett. 17(8), 1716–1718 (2005). [CrossRef]

11.

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400 Gbit/s (10 channel × 40 Gbit/s) DWDM photonic integrated circuits,” Electron. Lett. 41(6), 347–349 (2005). [CrossRef]

12.

J. W. Raring, E. J. Skogen, C. S. Wang, J. S. Barton, G. B. Morrison, S. Demiguel, S. P. Denbaars, and L. A. Coldren, “Design and demonstration of novel QW intermixing scheme for the integration of UTC-type photodiodes with QW-based components,” IEEE J. Quantum Electron. 42(2), 171–181 (2006). [CrossRef]

13.

E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]

14.

J.-W. Shi, F.-M. Kuo, M. Rodwell, and J. E. Bowers, “Ultra-high speed (270 GHz) near-ballistic uni-traveling-carrier photodiode with very-high saturation current (17 mA) under a 50 Ω load,” in Proc. 2011 IEEE Photonics Conference (PHO), 21–22, 9–13 Oct. 2011.

15.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett. 36(21), 1809–1810 (2000). [CrossRef]

16.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron . E83-C(6), 938–949 (2000).

OCIS Codes
(040.5160) Detectors : Photodetectors
(250.5300) Optoelectronics : Photonic integrated circuits
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Detectors

History
Original Manuscript: May 31, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 12, 2012
Published: August 17, 2012

Citation
E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, "170 GHz uni-traveling carrier photodiodes for
InP-based photonic integrated circuits," Opt. Express 20, 20090-20095 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microw. Theory Tech.58(11), 3071–3082 (2010). [CrossRef]
  2. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107(11), 111101 (2010). [CrossRef]
  3. H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol.1(1), 256–263 (2011). [CrossRef]
  4. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Int. J. Infrared Millim. Waves32(2), 143–171 (2011). [CrossRef]
  5. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004). [CrossRef]
  6. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express18(11), 11105–11110 (2010). [CrossRef] [PubMed]
  7. J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010). [CrossRef]
  8. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012). [CrossRef]
  9. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express20(2), 1769–1774 (2012). [CrossRef] [PubMed]
  10. F. Xia, S. Dutta, and S. R. Forrest, “A monolithically integrated optical heterodyne receiver,” IEEE Photon. Technol. Lett.17(8), 1716–1718 (2005). [CrossRef]
  11. R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, “400 Gbit/s (10 channel × 40 Gbit/s) DWDM photonic integrated circuits,” Electron. Lett.41(6), 347–349 (2005). [CrossRef]
  12. J. W. Raring, E. J. Skogen, C. S. Wang, J. S. Barton, G. B. Morrison, S. Demiguel, S. P. Denbaars, and L. A. Coldren, “Design and demonstration of novel QW intermixing scheme for the integration of UTC-type photodiodes with QW-based components,” IEEE J. Quantum Electron.42(2), 171–181 (2006). [CrossRef]
  13. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express20(8), 9172–9177 (2012). [CrossRef] [PubMed]
  14. J.-W. Shi, F.-M. Kuo, M. Rodwell, and J. E. Bowers, “Ultra-high speed (270 GHz) near-ballistic uni-traveling-carrier photodiode with very-high saturation current (17 mA) under a 50 Ω load,” in Proc. 2011 IEEE Photonics Conference (PHO), 21–22, 9–13 Oct. 2011.
  15. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000). [CrossRef]
  16. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C(6), 938–949 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited