OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20222–20227
« Show journal navigation

Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion

Wei Li, Li Xian Wang, Werner Hofmann, Ning Hua Zhu, and Dieter Bimberg  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20222-20227 (2012)
http://dx.doi.org/10.1364/OE.20.020222


View Full Text Article

Acrobat PDF (946 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.

© 2012 OSA

1. Introduction

Ultra-wideband (UWB) has been considered as a promising radio technology for future short-range high-capacity wireless communication and sensor networks due to its numerous advantages, such as low power consumption, immunity to multipath fading, and high data rate [1

1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003). [CrossRef]

,2

2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]

]. The U.S. Federal Communications Commission (FCC) has approved the unlicensed use of spectral band from 3.1 to 10.6 GHz with power density lower than –41.3 dBm/MHz [1

1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003). [CrossRef]

]. Such low spectral density in a wide spectral range leads to a limited propagation distance (typically <10 m) of the UWB links. Therefore, UWB-over-fiber systems have emerged to increase the transmission distance and take advantage of the low loss and wide bandwidth of the optical fiber. In this context, there is a strong demand to generate, modulate, and transmit UWB pulses directly in the optical domain.

Many efforts have been made to generate UWB pulses that meet the requirements specified by the FCC spectral mask. The main challenge is to avoid the –75 dBm dip in the FCC spectral mask for noninterference operation with other wireless communications, especially in the global positioning system (GPS) band (0.96–1.61 GHz). In the past few years, various techniques [3

3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006). [CrossRef] [PubMed]

11

11. J. Zheng, N. Zhu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photon. J. 4(3), 657–663 (2012). [CrossRef]

] have been proposed to generate UWB monocycle and doublet pulses using e.g. cross-gain modulation in a semiconductor optical amplifier (SOA) [3

3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006). [CrossRef] [PubMed]

,12

12. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 749–756 (2009). [CrossRef]

], phase-to-intensity modulation conversion [2

2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]

], and nonlinear modulation in a Mach-Zehnder modulator [10

10. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006). [CrossRef]

]. However, it has been demonstrated that the frequency spectra of both UWB monocycle and doublet pulses have significant components in the low frequency range (<2 GHz) and thus violate the dip in the FCC spectral mask [8

8. Y. Yu, J. Dong, X. Li, and X. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photon. Technol. Lett. 23(23), 1754–1756 (2011). [CrossRef]

,9

9. B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett. 37(12), 2217–2219 (2012). [CrossRef] [PubMed]

]. As a result, the signal power has to be attenuated to avoid the dip, which might make the UWB signals too weak to be detected. Recently, it was reported that an UWB triplet, i.e. the third-order derivative of a Gaussian pulse, can well meet the FCC spectral mask [13

13. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011). [CrossRef] [PubMed]

]. UWB triplet generation has been proposed e.g. based on an N tap microwave photonic filter [14

14. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]

] or the incoherent summation of two asymmetric monocycle pulses [15

15. E. Zhou, X. Xu, K.-S. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010). [CrossRef]

]. On the other hand, it is noted that the UWB triplet pulses reported in [14

14. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]

,15

15. E. Zhou, X. Xu, K.-S. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010). [CrossRef]

] consist of more than one optical wavelengths. As a result, these UWB pulses suffer from the fiber dispersion significantly. Hence, after a long-distance transmission these pulses are distorted [16

16. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Flexible monocycle UWB generation for reconfigurable access networks,” IEEE Photon. Technol. Lett. 22(12), 878–880 (2010). [CrossRef]

] and no longer fulfill the FCC mask. Therefore, it is much more promising to generate UWB triplet pulses at a single wavelength to meet the FCC spectral mask and to alleviate the dispersion-induced distortion.

2. Principle

The schematic configuration of the proposed UWB triplet pulse generator is shown in Fig. 1
Fig. 1 UWB triplet pulse generator.
. Two light waves emitted from two tunable laser sources (TLSs) are fiber coupled to two phase modulators (PMs) via two polarization controllers (PCs), respectively. An electrical Gaussian pulse from a pulse pattern generator (PPG) is split into two parts and then applied to the PMs. For the upper PM1, the Gaussian pulse is sent to an electrical Mach-Zehnder interferometer (MZI) before driving to the PM1. The inset of Fig. 1 shows the structure of the MZI. An optical delay line (ODL) is added after PM2 to introduce a delay between the two light waves. The two light waves are then combined together using an optical coupler (OC1) and amplified by an erbium-doped fiber amplifier (EDFA1). A highly nonlinear fiber (HNLF) is used to perform the FWM. The output signal from the HNLF is boosted by the other EDFA2 and then filtered by an optical bandpass filter (OBF) which performs the PM-IM conversion. An UWB triplet is generated at the output of the photodetector (PD).

Mathematically, the electrical fields of the phase-modulated light waves E1(t) and E2(t) can be expressed as
E1(t)=E1exp(jω1t)exp[jβ1s(t)+jβ1s(t2T0)]
(1)
E2(t)=E2exp(jω2t)exp[jβ2s(tT0)]
(2)
where E1 and E2 are the amplitudes of the light waves, ω1 and ω2 are the angular frequencies of the light waves, respectively. β1 = πVs1/Vπ1, β2 = πVs2/Vπ2 is the phase modulation index of PM1 and PM2, respectively. Vs1 and Vs2 are the amplitudes of the electrical signals applied to the PM1 and PM2, respectively. Vπ1 and Vπ2 are the half-wave voltages of PM1 and PM2, respectively. s(t) is the normalized electrical Gaussian pulse and T0 is the full width at half-maximum (FWHM) of the Gaussian pulse. The time delay, 2T0, in Eq. (1) is introduced by the electrical MZI as shown in Fig. 1 and the time delay, T0, in Eq. (2) is adjusted by the ODL.

Figure 2
Fig. 2 Principle of the UWB triplet pulse generator (OBF: optical bandpass filter).
shows the principle of the UWB triplet generator. In the HNLF idlers at frequencies of ω3 and ω4 are generated due to the FWM. The electrical field of the idler at ω3 is proportional to
E3(t)E22(t)E1*(t)=E22E1exp[j(2ω2ω1)t]exp{jβ[2s(tT0)s(t)s(t2T0)]}=E3exp(jω3t)exp[jβf(t)]
(3)
where we assume E3 = E1·E22, ω3 = 2ω2ω1, β1 = β2 = β, and f(t) = 2s(tT0)–s(t)–s(t–2T0). It can be seen that f(t) is a Gaussian doublet pulse where the inverted pulses are contributed by the phase conjugate term. In this way, a Gaussian doublet pulse is phase modulated onto the idler at ω3 via the FWM as shown in Fig. 2. The phase modulated Gaussian doublet pulse is sent to the OBF, which performs two functions: 1) PM-IM conversion and 2) rejecting the undesired optical components and the amplified spontaneous emission noise from EDFAs. When the phase modulated idler is located at the linear slope of the OBF, the OBF serves as a linear frequency discriminator [2

2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]

]. The linear frequency discriminator has a linear frequency and phase responses which can be expressed as
H(ω)=Kωexp(jωτf)
(4)
where K is the slope of the frequency response and τf denotes the time delay introduced by the OBF. The output from the OBF is given by
Eout(ω)=H(ω)E3(ω)
(5)
where E3(ω) is the Fourier transform of E3(t). Applying the inverse Fourier transform to Eq. (5), we have
Eout(t)=K{ω3+βd[f(tτf)]dt}E3(tτf).
(6)
Then, the photocurrent after the PD is proportional to [5

5. Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007). [CrossRef]

]
i(t)K2βω3d[f(tτf)]dt.
(7)
It is apparent that the photocurrent is equivalent to the first-order derivative of the Gaussian doublet pulse. Therefore, an UWB Gaussian triplet pulse is generated at a single wavelength as shown in Fig. 2. We note that the UWB triplet pulse with inverted polarity can be generated by locating the idler ω3 at the opposite slope of the OBF. Since the transfer spectrum of a microring resonator [18

18. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]

] based optical filter can be shifted by adjusting the driving voltage, it is possible to realize bi-phase modulation [19

19. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1249 (2009). [CrossRef]

] of the UWB triplet pulse.

3. Experiment and result

An experiment was designed based on the experimental setup shown in Fig. 1. Two light waves at wavelengths of 1549.77 (TLS1) and 1552.03 nm (TLS2) were sent to the PM1 and PM2, respectively. A Gaussian-like pulse train generated by a PPG (Anritsu MP1800A) was applied to PMs. The electrical MZI used in the setup had a free spectral range (FSR) of 5.85 GHz, corresponding to a time difference of ~171 ps between the two arms. Therefore, the PPG was set at a bit rate of 11.7 Gbit/s (2 × 5.85), according to Eq. (1), with a fixed pattern “1000 0000 0000 0000” (one “1” every 16 bits). This is equivalent to a pulse train with a repetition rate of 731.25 MHz and a duty cycle of about 1/16. As a result, electrical pulses with fixed patterns of “1010 0000 0000 0000” and “1000 0000 0000 0000” were applied to PM1 and PM2 via two gain-tunable electrical amplifiers (Photoline DR-AN-20-HO), respectively. An ODL was added in the lower path to introduce one bit time-delay between the two light waves.

The two light waves were coupled by a 50:50 OC1 and amplified by the EDFA1 to a total optical power of 13 dBm. The combined light waves were transmitted along a 1 km HNLF with zero-dispersion wavelength of 1551 nm and a nonlinear coefficient of 10 W–1 ·km–1. The optical spectrum was measured at the output of the HNLF, as shown in Fig. 3(a)
Fig. 3 Measured optical spectra at (a) the output of the HNLF and (b) the 10% branch of the OC2 as shown in Fig. 1.
, using an optical spectrum analyzer (OSA, Advantest Q8384). Due to the FWM in the HNLF, two idlers were generated at wavelengths of 1547.51 and 1554.29 nm. An OBF with 3–dB bandwidth of 0.2 nm was used to filter out the idler at 1554.29 nm and perform the PM-IM conversion. Figure 3(b) shows the measured optical spectrum of the remaining idler after filtering. It can be seen that the optical signal consists of only one wavelength and is therefore resistant to distortion. The UWB triplet pulse was detected by a PD (Agilent 11982A) with the waveform measured by a high-speed sampling oscilloscope (OSC, Tektronix CSA8000). The electrical spectrum was recorded by an electrical spectrum analyzer (ESA, Advantest R382). The measured waveform of the generated UWB triplet pulse and the corresponding electrical spectrum are presented in Fig. 4(a) and (b)
Fig. 4 Measured (a) waveform of the UWB triplet and (b) the corresponding electrical spectrum.
, respectively. The UWB triplet pulse is generated from the idler. Therefore, a low FWM efficiency will result in a low signal-to-noise ratio of the idler, which degrades the quality of the generated pulses. The electrical spectrum is centered at 5.1 GHz with a fractional bandwidth of about 100% which is larger than the minimal requirement of 20% defined by the FCC. It can be seen that the electrical spectrum has a dip around GPS band and matches the FCC spectral mask well. Actually, the proposed UWB generator can also be regarded as a multi-tap bandpass microwave filter [14

14. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]

]. The envelope of the electrical spectrum shown in Fig. 4(b) is the frequency response of the microwave filter. The mainlobe locates in the frequency range from ~1.5 to ~9 GHz with the second dip at ~9 GHz.

4. Discussion and outlook

It should be noted that the proposed UWB generator is not tunable since it is actually a direct-sequence impulse radio UWB generator that operates in a single UWB band. For multiband UWB generator, subband tuning and switching can be achieved [2

2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]

]. For the proposed scheme, arbitrary order UWB Gaussian pulses, in principle, can be optically generated by simply modifying the experimental configuration as illustrated in Fig. 5
Fig. 5 Arbitrary order UWB pulse generator (m and n are integers).
, where PMs are cascaded at the outputs of the two TLSs. The time delays between pulses are adjusted by ODLs instead of the electrical and optical hybrid delay lines used in Fig. 1. As a result, the bit rate of the PPG is no longer restricted by the FSR of the electrical MZI, which cannot be changed easily. An example of generating the UWB quadruplet pulse by performing the first order derivative of a phase-modulated Gaussian triplet pulse is shown in Fig. 5, where four PMs are used. In addition, the proposed technique can be also used as a multi-tap microwave filter since it shares the same operational principle with the UWB generator [14

14. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]

,20

20. W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19(13), 12312–12324 (2011). [CrossRef] [PubMed]

].

5. Conclusion

We have demonstrated a FCC-compliant UWB triplet generation technique using FWM and PM-IM conversion. The proposed scheme is basically a two-step process. First a phase-modulated Gaussian doublet pulse is generated by FWM in the HNLF. Then a FCC-compliant UWB triplet pulse is generated by performing PM-IM conversion of the phase-modulated Gaussian doublet pulse using an OBF serving as the frequency discriminator. The triplet pulses are generated at a single wavelength to alleviate dispersion-induced distortion. In addition, it is easy to extend our scheme to generate arbitrary order UWB Gaussian pulses by cascading PMs.

Acknowledgments

We gratefully acknowledge the Alexander von Humboldt Foundation for supporting Wei Li by a Research Fellowship at Technical University of Berlin, Berlin, Germany. This work was also supported in part by the National Natural Science Foundation of China under Grants 61108002, 61090390, 60820106004, and 61021003, in part by the National Basic Research Program of China under Grants 2012CB315702 and 2012CB315703, and in part by the Deutsche Forschungsgemeinschaft via CRC 787.

References and links

1.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003). [CrossRef]

2.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]

3.

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006). [CrossRef] [PubMed]

4.

S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009). [CrossRef] [PubMed]

5.

Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007). [CrossRef]

6.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18(15), 15870–15875 (2010). [CrossRef] [PubMed]

7.

B. Zhang, X. Zhao, D. Parekh, Y. Yue, W. Hofmann, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, “Reconfigurable multifunctional operation using optical injection-locked vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 27(15), 2958–2963 (2009). [CrossRef]

8.

Y. Yu, J. Dong, X. Li, and X. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photon. Technol. Lett. 23(23), 1754–1756 (2011). [CrossRef]

9.

B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett. 37(12), 2217–2219 (2012). [CrossRef] [PubMed]

10.

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006). [CrossRef]

11.

J. Zheng, N. Zhu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photon. J. 4(3), 657–663 (2012). [CrossRef]

12.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 749–756 (2009). [CrossRef]

13.

S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011). [CrossRef] [PubMed]

14.

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]

15.

E. Zhou, X. Xu, K.-S. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010). [CrossRef]

16.

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Flexible monocycle UWB generation for reconfigurable access networks,” IEEE Photon. Technol. Lett. 22(12), 878–880 (2010). [CrossRef]

17.

S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009). [CrossRef] [PubMed]

18.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]

19.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1249 (2009). [CrossRef]

20.

W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19(13), 12312–12324 (2011). [CrossRef] [PubMed]

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 11, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 15, 2012
Published: August 20, 2012

Citation
Wei Li, Li Xian Wang, Werner Hofmann, Ning Hua Zhu, and Dieter Bimberg, "Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion," Opt. Express 20, 20222-20227 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003). [CrossRef]
  2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007). [CrossRef]
  3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006). [CrossRef] [PubMed]
  4. S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett.34(2), 160–162 (2009). [CrossRef] [PubMed]
  5. Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol.25(11), 3626–3633 (2007). [CrossRef]
  6. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express18(15), 15870–15875 (2010). [CrossRef] [PubMed]
  7. B. Zhang, X. Zhao, D. Parekh, Y. Yue, W. Hofmann, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, “Reconfigurable multifunctional operation using optical injection-locked vertical-cavity surface-emitting lasers,” J. Lightwave Technol.27(15), 2958–2963 (2009). [CrossRef]
  8. Y. Yu, J. Dong, X. Li, and X. Zhang, “Ultra-wideband generation based on cascaded Mach-Zehnder modulators,” IEEE Photon. Technol. Lett.23(23), 1754–1756 (2011). [CrossRef]
  9. B. Luo, J. Dong, Y. Yu, T. Yang, and X. Zhang, “Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop,” Opt. Lett.37(12), 2217–2219 (2012). [CrossRef] [PubMed]
  10. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006). [CrossRef]
  11. J. Zheng, N. Zhu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband (UWB) pulse with tunable notch-band behavior,” IEEE Photon. J.4(3), 657–663 (2012). [CrossRef]
  12. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm,” IEEE J. Sel. Top. Quantum Electron.15(3), 749–756 (2009). [CrossRef]
  13. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36(12), 2363–2365 (2011). [CrossRef] [PubMed]
  14. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009). [CrossRef] [PubMed]
  15. E. Zhou, X. Xu, K.-S. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010). [CrossRef]
  16. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Flexible monocycle UWB generation for reconfigurable access networks,” IEEE Photon. Technol. Lett.22(12), 878–880 (2010). [CrossRef]
  17. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett.34(20), 3092–3094 (2009). [CrossRef] [PubMed]
  18. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  19. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett.45(24), 1247–1249 (2009). [CrossRef]
  20. W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express19(13), 12312–12324 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited