## Gated mode superconducting nanowire single photon detectors |

Optics Express, Vol. 20, Issue 2, pp. 1608-1616 (2012)

http://dx.doi.org/10.1364/OE.20.001608

Acrobat PDF (927 KB)

### Abstract

Single Photon Detectors are fundamental to quantum optics and quantum information. Superconducting nanowire detectors exhibit high performance in free-running mode, but have a limited maximum count rate. By exploiting a bistable superconducting nanowire system, we demonstrate the first gated-mode operation of these detectors for a large active area single element device at 625MHz, one order of magnitude faster than its free-running counterpart. We show the maximum count rate in gated-mode operation can be pushed to GHz range without a compromise on the active area or quantum efficiency, while reducing the dark count rate.

© 2012 OSA

## 1. Introduction

*I*), a photon induced resistive hotspot, followed by current assisted formation of a resistive bridge, results in a macroscopic voltage pulse [1

_{C}1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. **79**, 705–707 (2001). [CrossRef]

2. R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nature Photon. **3**, 696–705 (2009). [CrossRef]

3. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of SNSPD system with Gifford-McMahon cryocooler,” IEEE Trans. Appl. Supercond. **19**, 332–335 (2009). [CrossRef]

4. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express **14**, 527–534 (2006). [CrossRef] [PubMed]

5. G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C **2**, 1480–1488 (2005). [CrossRef]

6. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. **56**, 364–373 (2009). [CrossRef]

6. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. **56**, 364–373 (2009). [CrossRef]

7. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. **2**, 302–306 (2008). [CrossRef]

8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photon. **1**, 343–348 (2007). [CrossRef]

9. M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” International Conference on Space Optical Systems and Applications, ICSOS’11, 78–82 (2011).

10. J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. **39**, 1086–1088 (2003). [CrossRef]

11. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. **89**, 031109 (2006). [CrossRef]

12. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. **88**, 111116 (2006). [CrossRef]

*R*represents the load impedance and

_{L}*L*represents the kinetic inductance associated with the nanowires in the superconducting phase. In the absence of photons, the superconducting nanowires shunt current away from

_{K}*R*, leaving zero voltage across it. The absorption of a single photon leads to formation of a hot resistive bridge across the width of a nanowire which forces the current through the load, hence creating a rising voltage that signals a photon detection.

_{L}*τ*=

_{e}*L*, the faster the return to the initial state and the higher the maximum count rate (MCR) [12

_{K}/R_{L}12. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. **88**, 111116 (2006). [CrossRef]

13. W. J. Skocpol, M. R. Beasley, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges,” J. Appl. Phys. **45**, 4054–4066 (1974). [CrossRef]

14. A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. **59**, 941–999 (1987). [CrossRef]

*I*), the monostability condition puts a lower limit on

_{C}*τ*,

_{e}*τ*, beyond which the FM-SNSPD will turn into a bistable system and stop working [15

_{e–min}15. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B **79**, 100509(R) (2009). [CrossRef]

16. A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. **108**, 084507 (2010). [CrossRef]

*τ*scales up with

_{e–min}*L*; for a single element FM-SNSPDs

_{K}*L*is proportional to the active area of the detector; and the larger the active area the easier the coupling of photons to it and thus the higher system QE. All of these put together impose a tradeoff between the system QE and the MCR that severely limits the MCR of typical high system QE single element SNSPDs. [15

_{K}15. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B **79**, 100509(R) (2009). [CrossRef]

*τ*, while keeping the active area unchanged. It can be reduced by exploiting different materials [17

_{e–min}17. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, A. Otomo, and Z. Wang, “Superconducting NbTiN nanowire single photon detectors with low kinetic inductance,” Appl. Phys. Express **2**, 075002 (2009). [CrossRef]

19. H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, “Single-photon detection using magnesium diboride superconducting nanowires,” Appl. Phys. Lett. **97**, 212504 (2010). [CrossRef]

20. M. Ejrnaes, A. Casaburi, R. Cristiano, O. Quaranta, S. Marchetti, and S. Pagano, “Maximum count rate of large area superconducting single photon detectors,” J. Mod. Optics **56**, 390–394 (2009). [CrossRef]

22. M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. **92**, 241112 (2008). [CrossRef]

6. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. **56**, 364–373 (2009). [CrossRef]

23. X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express **19**, 17–31 (2011). [CrossRef] [PubMed]

*τ*>

_{e}*τ*can be relaxed and thus the MCR will be enhanced. High count rates are needed for many applications like quantum computing [24

_{e–min}24. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature **409**, 46–52 (2001). [CrossRef] [PubMed]

8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photon. **1**, 343–348 (2007). [CrossRef]

25. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express **19**, 13497–13502 (2011). [CrossRef] [PubMed]

## 2. Concept and implementation

*R*such that

_{L}*τ*<

_{e}*τ*to make an electrically fast but bistable system. However, instead of a constant bias current, we apply an alternating current with a DC offset to the nanowires. At the peak of the current, the superconducting nanowire latches to the resistive state upon a photon detection or a dark count. The latched nanowire will then be reset to superconducting state by the next minima of the current. Therefore, latching to the resistive state which has been a detrimental effect for FM-SNSPDs, would be part of the detection process in the GM. Also, because

_{e–min}*τ*<

_{e}*τ*, a GM-SNSPD will have a higher MCR compared to the same SNSPD operated in FM.

_{e–min}*R*

_{1}= 50Ω and a biasing resistor,

*R*≫

_{B}*R*

_{1}. This current is sensed by

*R*

_{2}= 50Ω together with two amplifiers. The other path undergoes an adjustable delay and attenuation. The voltage difference,

*V*=

_{d}*V*

_{2}–

*V*

_{1}would be small in absence of incoming photons for an appropriately adjusted circuit. However, as illustrated in Fig. 1(c),

*V*peaks whenever the detector latches. We use discriminated

_{d}*V*to count photons. We also make an FM-SNSPD to compare it with the GM operation: a DC bias source is used in the same circuit of Fig. 1(b) but

_{d}*R*

_{1}replaced with a large 100nF capacitor. Such circuit is electrically equivalent to the one in Fig. 1(a) with

*R*=

_{L}*R*+

_{B}*R*

_{2}and thus provides FM operation with minimal changes. The 100nF capacitor and the high electron mobility transistor (HEMT) isolate the sensitive nanowire from noise and small microwave reflections in both coax cables connecting the device, and thus further ensures appropriate operation of the system.

*μ*m long, 4nm thick, 120nm wide Niobium Nitride on Sapphire. Active area is 10 × 10

*μ*m

^{2}(see [26

26. G. Gol’tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, J. Kitaygorsky, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec, and R. Sobolewski, “Middle-infrared to visible-light ultrafast superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. **17**, 246–251 (2007). [CrossRef]

*L*= 490nH (see methods) and

_{K}*τ*= 3.3ns (equivalent to

_{e–min}*R*= 150Ω) (see methods).

_{L}## 3. Experimental characterization

27. M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, “Nonlinearity in single photon detection: modeling and quantum tomography,” Opt. Express **19**, 21305–21312 (2011). [CrossRef] [PubMed]

*x*, taking 0 for no-click and 1 for click events. The autocorrelation function, Γ(

*τ*≠ 0) of

*x*gives the joint probability of two events separated in time by

*τ*. We use normalized Γ(

*τ*≠ 0) to check the independency of successive events and therefore to study features like dead time and after pulses.

*τ*). For GM:

*R*= 650Ω, the bias is 625MHz sinusoidal with minima and maxima equal to −2

_{B}*μ*A and 0.9

*I*respectively (see methods). For FM: allowing a margin to further avoid latching, we set

_{C}*R*= 100Ω, and the DC bias to 0.9

_{L}*I*. The results show for having Γ(

_{C}*τ*) changed by less than 10%,

*τ*should be greater than 22ns in FM, while within the same limits, adjacent gates of the 625MHz GM-SNSPD keep their statistical independency. This shows about one order of magnitude speed increased in GM. Also, Fig. 2(b) is a time histogram of the detection events within a gate period. It shows the QE changes less than 5% for a time window equal to 57ps (about 1/30th of the gating period).

*τ*) is shown in Fig. 2(c). It shows clear jumps each 20 gating periods, and in between remains flat at a level determined by the dark count probability per gate. An exception occurs at the first gate where it is enhanced by an after pulsing probability of about 0.03%. We attribute this to either an unwanted oscillatory behavior in the biasing current following a photon detection or a temperature rise in the corresponding gate. The possibility of both options will be seen later in the paper.

*I*):

_{B}*QE*(

_{FM}*I*) and

_{B}*DCR*(

_{FM}*I*). For

_{B}*DCR*(

_{FM}*I*), we fitted an exponential function to the data points and assumed the function is valid outside the measured range in later calculations. In the GM, the bias current takes the form:

_{B}*I*(

_{B}*t*) =

*I*

_{0}+

*I*

_{1}

*cos*(2

*πt/T*), where

*I*

_{0}and

*I*

_{1}are the DC and AC components of the bias,

*t*labels the time and

*T*is the bias period. The solid line in Fig. 2(b) is a plot of

*QE*(

_{FM}*I*(

_{B}*t*))

*/QE*(

_{FM}*I*

_{0}+

*I*

_{1}), with

*I*

_{0},

*I*

_{1}and

*T*set for the same experimental conditions. The agreement between the curve and the points shows the GM gate shape is determined by the variation of

*I*during a bias period.

_{B}*T*/2 <

*t*<

*T*/2, the probability of registering a dark count between

*t*and

*t*+

*dt*is equal to

*DCR*(

_{FM}*I*(

_{B}*t*))

*dt*, provided the detector has not already been latched in the same gate. That is to write: Doing the math, the average of DCR in the GM would be: The solid line under the GM-DCR measured points in Fig. 3 is the result of this equation, with

*I*

_{0},

*I*

_{1}and

*T*set for the same experimental conditions. The agreement between the points and the curve shows for GM-SNSPD the DCR is smaller because the bias current does not always stay at a high level. In fact our GM-DCR is about 20 times smaller than the corresponding DCR in the FM at the cost of having the detector on for about 1/30th of the time. We attribute the small difference between the calculated curve and the measured points to experimental error in adjusting the high frequency bias current of the nanowires.

## 4. Simulations

28. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans Appl. Supercond. **17**, 581–585 (2007). [CrossRef]

*C*= 0.14pf+0.38pf+44ff+6.3ff= 0.57pf and

_{P}*R*=

_{P}*R*+

_{B}*R*

_{2}+ 25, where 25Ω is the resistance seen from the left of

*R*looking to

_{B}*R*

_{1}and the left coax (see Fig. 1(b)). We implemented our time domain solver in Matlab. The initial temperature of the superconducting wire was set to the substrate temperature (4.2K). The initial currents and voltages were set from the steady state response of the circuit of Fig. 4(b) with no resistive hotspot, to a sinusoidal bias current with a negative peak equal to −2

*μ*A and a positive peak equal to 95% of

*I*= 16.9

_{C}*μ*A at 4.2K. To simulate what happens after a photon detection, we add a hotspot with a maximum temperature of 11.0K (slightly higher than the superconducting critical temperature equal to 10.5K), and a length equal to 16nm when the nanowire current is at a peak. We confirmed that even for the smallest

*L*= 6

_{K}*nH*used throughout our simulations, the hotspot grows to sizes considerably larger than its initial 16nm width. Therefore, a rather arbitrary choice of our hotspot’s initial shape does not have a major impact on the simulation results.

*R*= 725Ω (equivalent to

_{P}*R*= 650Ω) and

_{B}*L*= 490nH. At less than about 300MHz or at about 600MHz the peaks do not change significantly. Indeed, this is how the gating frequencies in the experiments are selected. Therefore, the oscillatory response of an under-damped RLC circuit puts a purely electrical limitation for the gating frequency of our GM-SNSPD.

_{K}*C*can be reduced to 0.01pf if

_{P}*R*is integrated to the SNSPD chip, we repeat the simulation for values of

_{B}*L*ranging from 6nH to 6

_{K}*μ*H. For each

*L*, we choose

_{K}*R*such that it makes a critically-damped RLC circuit. We simulate for the maximum temperature of the nanowire at the center of the gate following a detection gate (when the nanowire current reaches its maximum again). The results are shown in Fig. 4(c). The curves are up to the frequency at which the detector re-latches in the next maxima of the current due to an elevated nanowire temperature. We also confirm that the currents of Fig. 4(c) are horizontally flat for this case. Therefore, for such an integrated GM-SNSPD the MCR would be purely limited by the thermal response of the SNSPD. Notice, increasing

_{B}*L*over three orders of magnitude decreases the MCR by about 33%. Therefore, in contrast with FM-SNSPDs, little compromise on active area is required for achieving high MCR in GM. Also, because FM-SNSPDs with smaller

_{K}*L*offer higher MCR, while the MCR in GM is not a very sensitive function of

_{K}*L*, we expect less MCR improvement for smaller SNSPDs.

_{K}## 5. Methods

### 5.1. SNSPD electrical model

29. R. C. Taber and C. A. Flory, “Microwave oscillators incorporating cryogenic sapphire dielectric resonators,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control **42**, 111–119 (1995). [CrossRef]

30. V. B. Braginsky, V. S. Ilchenko, and K. S. Bagdassarov, “Experimental observation of fundamental microwave absorption in high-quality dielectric crystals,” Phys. Lett. A **120**, 300–305 (1987). [CrossRef]

12. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. **88**, 111116 (2006). [CrossRef]

*R*= 50Ω, disconnect the connection to the HEMT amplifier and connect RF

_{B}*to a coaxial cable. We measured the input reflection coefficient using a vector network analyzer (VNA) calibrated at the cryogenic end of the coax while the device was cooled to 4.2K. The agreement between the measurement and what we simulate in ADS using the model in Fig. 4(a), confirmed the model is fairly accurate at least up to 2GHz.*

_{in}### 5.2. Minimum τ_{e} in free running mode

15. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B **79**, 100509(R) (2009). [CrossRef]

*R*values, starting from a high bias current that results in a stable latched state, we measured the current at which the nanowire returns to the superconducting state while sweeping the bias current downwards. We observed the return current starts to decrease for

_{L}*R*greater than about 150Ω. This value and its associated

_{L}*τ*are what we report as

_{e}*τ*for our FM-SNSPD. We used our FM-SNSPD setup described earlier in section 2, and operated it at 4.2K to do this experiment.

_{e–min}*R*was changed by changing

_{L}*R*at discrete steps.

_{B}### 5.3. Adjusting the high frequency current

*μ*A) for the minima to allow more room for the effect of noise and also errors in determining the transconductance.

### 5.4. Thermal Model

28. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans Appl. Supercond. **17**, 581–585 (2007). [CrossRef]

*x*,

*T*(

*x,t*),

*J*(

*t*),

*ρ*(

*x,t*),

*k*(

*x,t*),

*α*(

*x,t*),

*d*,

*T*and

_{sub}*c*(

*x,t*) are coordinate, temperature, current density, electrical resistivity, thermal conductivity, thermal boundary conductivity, nanowire thickness, substrate temperature and specific heat, respectively. We use the same nonlinear temperature and phase dependencies of the parameters as in [28

28. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans Appl. Supercond. **17**, 581–585 (2007). [CrossRef]

*μ*A. The thermal model is coupled to the electrical model through the voltage and current across the hotspot shown in Fig. 4(b). We assume the nanowire is long enough that the hotspot never reaches the two ends, and thus the two ends can always be assumed to be at the substrate temperature. We did all the simulations at

*T*equal to 4.2K.

_{sub}## 6. Conclusion

*L*, the MCR can be pushed to the GHz range where a purely thermal limitation does not allow faster operation. The work will add a degree of freedom for designing ultra-high speed SPDs for applications like quantum key distribution and laser ranging.

_{K}## Acknowledgments

## References and links

1. | G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. |

2. | R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nature Photon. |

3. | S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of SNSPD system with Gifford-McMahon cryocooler,” IEEE Trans. Appl. Supercond. |

4. | K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express |

5. | G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C |

6. | E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. |

7. | A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon. |

8. | H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photon. |

9. | M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” International Conference on Space Optical Systems and Applications, ICSOS’11, 78–82 (2011). |

10. | J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett. |

11. | M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. |

12. | A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. |

13. | W. J. Skocpol, M. R. Beasley, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges,” J. Appl. Phys. |

14. | A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. |

15. | A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B |

16. | A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys. |

17. | S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, A. Otomo, and Z. Wang, “Superconducting NbTiN nanowire single photon detectors with low kinetic inductance,” Appl. Phys. Express |

18. | A. J. Annunziata, D. F. Santavicca, J. D. Chudow, L. Frunzio, M. J. Rooks, A. Frydman, and D. E. Prober, “Niobium superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. |

19. | H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, “Single-photon detection using magnesium diboride superconducting nanowires,” Appl. Phys. Lett. |

20. | M. Ejrnaes, A. Casaburi, R. Cristiano, O. Quaranta, S. Marchetti, and S. Pagano, “Maximum count rate of large area superconducting single photon detectors,” J. Mod. Optics |

21. | Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond. |

22. | M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. |

23. | X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express |

24. | E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature |

25. | M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express |

26. | G. Gol’tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, J. Kitaygorsky, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec, and R. Sobolewski, “Middle-infrared to visible-light ultrafast superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. |

27. | M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, “Nonlinearity in single photon detection: modeling and quantum tomography,” Opt. Express |

28. | J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans Appl. Supercond. |

29. | R. C. Taber and C. A. Flory, “Microwave oscillators incorporating cryogenic sapphire dielectric resonators,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control |

30. | V. B. Braginsky, V. S. Ilchenko, and K. S. Bagdassarov, “Experimental observation of fundamental microwave absorption in high-quality dielectric crystals,” Phys. Lett. A |

**OCIS Codes**

(040.0040) Detectors : Detectors

(040.5570) Detectors : Quantum detectors

(270.5570) Quantum optics : Quantum detectors

**ToC Category:**

Detectors

**History**

Original Manuscript: November 23, 2011

Revised Manuscript: December 28, 2011

Manuscript Accepted: December 30, 2011

Published: January 10, 2012

**Citation**

Mohsen K. Akhlaghi and A. Hamed Majedi, "Gated mode superconducting nanowire single photon detectors," Opt. Express **20**, 1608-1616 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1608

Sort: Year | Journal | Reset

### References

- G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705–707 (2001). [CrossRef]
- R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nature Photon.3, 696–705 (2009). [CrossRef]
- S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of SNSPD system with Gifford-McMahon cryocooler,” IEEE Trans. Appl. Supercond.19, 332–335 (2009). [CrossRef]
- K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14, 527–534 (2006). [CrossRef] [PubMed]
- G. N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C2, 1480–1488 (2005). [CrossRef]
- E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt.56, 364–373 (2009). [CrossRef]
- A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lvy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nature Photon.2, 302–306 (2008). [CrossRef]
- H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photon.1, 343–348 (2007). [CrossRef]
- M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” International Conference on Space Optical Systems and Applications, ICSOS’11, 78–82 (2011).
- J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003). [CrossRef]
- M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006). [CrossRef]
- A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett.88, 111116 (2006). [CrossRef]
- W. J. Skocpol, M. R. Beasley, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges,” J. Appl. Phys.45, 4054–4066 (1974). [CrossRef]
- A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys.59, 941–999 (1987). [CrossRef]
- A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509(R) (2009). [CrossRef]
- A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, and D. E. Prober, “Reset dynamics and latching in niobium superconducting nanowire single-photon detectors,” J. Appl. Phys.108, 084507 (2010). [CrossRef]
- S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, A. Otomo, and Z. Wang, “Superconducting NbTiN nanowire single photon detectors with low kinetic inductance,” Appl. Phys. Express2, 075002 (2009). [CrossRef]
- A. J. Annunziata, D. F. Santavicca, J. D. Chudow, L. Frunzio, M. J. Rooks, A. Frydman, and D. E. Prober, “Niobium superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 327–331 (2009). [CrossRef]
- H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, “Single-photon detection using magnesium diboride superconducting nanowires,” Appl. Phys. Lett.97, 212504 (2010). [CrossRef]
- M. Ejrnaes, A. Casaburi, R. Cristiano, O. Quaranta, S. Marchetti, and S. Pagano, “Maximum count rate of large area superconducting single photon detectors,” J. Mod. Optics56, 390–394 (2009). [CrossRef]
- Y. Korneeva, I. Florya, A. Semenov, A. Korneev, and G. Goltsman, “New generation of nanowire NbN superconducting single-photon detector for mid-infrared,” IEEE Trans. Appl. Supercond.21, 323–326 (2011). [CrossRef]
- M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett.92, 241112 (2008). [CrossRef]
- X. Hu, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Superconducting nanowire single-photon detectors integrated with optical nano-antennae,” Opt. Express19, 17–31 (2011). [CrossRef] [PubMed]
- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
- M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express19, 13497–13502 (2011). [CrossRef] [PubMed]
- G. Gol’tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, J. Kitaygorsky, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec, and R. Sobolewski, “Middle-infrared to visible-light ultrafast superconducting single-photon detectors,” IEEE Trans. Appl. Supercond.17, 246–251 (2007). [CrossRef]
- M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, “Nonlinearity in single photon detection: modeling and quantum tomography,” Opt. Express19, 21305–21312 (2011). [CrossRef] [PubMed]
- J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans Appl. Supercond.17, 581–585 (2007). [CrossRef]
- R. C. Taber and C. A. Flory, “Microwave oscillators incorporating cryogenic sapphire dielectric resonators,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control42, 111–119 (1995). [CrossRef]
- V. B. Braginsky, V. S. Ilchenko, and K. S. Bagdassarov, “Experimental observation of fundamental microwave absorption in high-quality dielectric crystals,” Phys. Lett. A120, 300–305 (1987). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.