OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1856–1861
« Show journal navigation

Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems

Jian-Bo Li, Nam-Chol Kim, Mu-Tian Cheng, Li Zhou, Zhong-Hua Hao, and Qu-Quan Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1856-1861 (2012)
http://dx.doi.org/10.1364/OE.20.001856


View Full Text Article

Acrobat PDF (979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigated optical third-order nonlinearity of a coherently coupled exciton-plasmon hybrid system under a strong control field with a weak probe field. The analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) were deduced. The bistable exciton population and the induced bistable nonlinear absorption and refraction response were revealed. The bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. Our results have perspective applications in optical information processing based on resonant coupling of exciton-plasmon.

© 2012 OSA

1. Introduction

Interactions between exciton systems and plasmonic structures have attracted considerable attention [1

1. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006). [CrossRef] [PubMed]

20

20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

]. Because of these interactions, one can enhance emission and fluorescence [3

3. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007). [CrossRef] [PubMed]

,4

4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]

], control energy transfer [5

5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]

], generate single plasmons [6

6. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]

], induce exciton-plasmon-photon conversion [7

7. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007). [CrossRef] [PubMed]

], modify the spontaneous emission in semiconductor quantum dots (SQDs) [8

8. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008). [CrossRef] [PubMed]

], etc. Moreover, the exciton coherent dynamics building on the exciton-plasmon interaction have been extensively theoretically studied, including nonlinear Fano resonances [9

9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]

,10

10. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).

], formation and control of Rabi oscillation [11

11. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009). [CrossRef]

,12

12. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32(15), 2125–2127 (2007). [CrossRef] [PubMed]

], enhancement of Rabi flopping [11

11. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009). [CrossRef]

], mid-infrared generation [14

14. J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008). [CrossRef]

] and SQD-induced transparency [15

15. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011). [CrossRef]

] and so on. Many photonic devices based on exciton-plasmon hybrid structures have already been predicted in theory and demonstrated experimentally, including optical switches and transistors [16

16. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007). [CrossRef]

,17

17. S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010). [CrossRef] [PubMed]

], nanoscale lasers [18

18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]

20

20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

], photodetectors [21

21. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009). [CrossRef] [PubMed]

] and optical modulators [22

22. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]

].

In this paper, we theoretically deduced the analytic formulas for exciton population and effective third-order optical susceptibility of the SQD-MNP hybrid system under a strong control field with a weak probe field. We studied the third-order optical nonlinearity of the system and found the bistable exciton population and the induced bistable nonlinear absorption and refraction response.

2. Model and formalism

We consider a system comprising a spherical SQD with radius r and a spherical MNP with radius R, separated by a surface-to-surface distance d (Fig. 1(a)
Fig. 1 (a) Schematic diagram of the hybrid system driven by a strong control field with amplitude Ec and frequency ωc and probed by a weak signal field with amplitude Es and frequency ωs (Ec >>Es). r and R are the radii of SQD and MNP, respectively. d is the surface-to-surface distance between SQD and MNP. ε0, εs and εm are the dielectric constants of the background medium, SQD and MNP, respectively. (b) Energy level diagram of the system. ω10 and ωsp are the frequencies of exciton and surface plasmon, respectively.
). The SQD and MNP are described by a density matrix formalism and classical electrodynamics, respectively. The hybrid is subject to a strong control field and a weak signal field (Fig. 1(b)).

D(δc)=(δciT2/T1)[1+(Δc+Bcw0)2][(δci)2(Δc+Bcw0)2]+4A2Ωc2[(iδc)(1+Δc2)Bcw0(iBcw0+Δcδc)].
(4)

Here, N is the number density of the hybrid system, Ωc2 = µ2|Ec|2T22 /ћ2 is the generalized intensity of the control field, δc = δT2, Δc = ΔT2 and Bc = µ2BT2 /ћ2. Imχeff(3) and Reχeff(3) represent the nonlinear absorption and refraction, respectively. The population inversion of the exciton w0 is determined by the cubic equation

w0=4A2Ωc2(T1/T2)w0/[1+(Δc+Bcw0)2]1.
(5)

The Eq. (5) is of the third order in w0 and therefore may have one or three real solutions, strongly depending on the radius of MNP, surface-to-surface distance d and the intensity of the control field Ωc2. The latter case corresponds to the optical bistability arising from the strong coupling between SQD and MNP.

3. Results and discussion

To obtain an insight from these complicated expressions, we graphically display them for a wide range of some important parameters. We take the typical values ε0 = 2.25, εs = 6, T1 = 0.8 ns, T2 = 0.3 ns and µ = 10−28 C∙m [9

9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]

], and N = 1014 m−3. The bare exciton frequency is chosen to be 2.5 eV, which is close to the broad plasmon frequency of gold (peak near 2.4 eV with a width of approximately 0.25 eV). As for the Au nanoparticle size region we consider, the plasmon resonance frequency changes little with the size.

Figures 2(a)
Fig. 2 Nonlinear absorption Imχeff(3) (a) and refraction Reχeff(3) (b) as a function of the detuning (ωs - ωc)T2 with d = 15 nm and (ω10 - ωc)T2 = 0, 1, 2, 5.
and 2(b) show the dynamic evolution of nonlinear absorption and refraction spectra with four different detunings (ω10 - ωc)T2. In Fig. 2(a), the absorption spectra which are located in regions I, II, III are originated from the three-photon resonance, stimulated Rayleigh resonance and ac-Stark resonance, respectively [35

35. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981). [CrossRef]

]. In region I, the absorption spectrum attributed to the three-photon effect evolves from a Fano-like lineshape into a negative peak and has a peak redshift as the detuning (ω10 - ωc)T2 increases. In region II, the absorption spectrum assigned to the Rayleigh resonance evolves from a negative peak into a Fano-like lineshape and has an increased magnitude. In region III, the absorption spectrum induced by the ac-Stark effect evolves from the Fano-like lineshape into a positive peak, and the peak first redshifts and then blueshifts. The corresponding refraction spectra are shown in Fig. 2(b). As required by the nonlinear Kramers-Kronig relation, the complementary behavior between the absorptive and refractive features is evident. From resonant excitation to near-resonant excitation, the dynamic evolution of the absorption and refraction spectra implies that the dominant role of three resonance mechanisms changes continuously. In the following discussion, we focus on the nonlinear absorption and refraction response of the hybrid under near-resonant excitation when ωs = ωc corresponding to the stimulated Rayleigh resonance.

Figure 3(a)
Fig. 3 (a) Population inversion w0 as a function of interparticle distance between SQD and MNP d for R = 5, 7.5, 10 nm with ωc = ωs and (ω10 - ωc)T2 = 1. (b) Nonlinear absorption Imχeff(3) versus d. (c) Imχeff(3) versus d for R = 7.5 nm in the bistability region of (b). (d) Nonlinear refraction Reχeff(3) versus d. (e) Reχeff(3) versus d for R = 7.5 nm in the bistability region of (d).
shows the bistability of exciton population on the interparticle distance between SQD and MNP d for the radius of MNP R = 5, 7.5, 10 nm. There are three real roots for w0 in Eq. (5) for a given d, which implies that a regime of bistability emerges. A region of optical bistability is formed by adjusting the value of d. In the bistability region of db0ddb1 (db0 and db1 are the critical values that the optical bistable response exists), population inversion w0 versus d manifests a standard S-shaped curve, while the induced nonlinear absorption and refraction spectra are exotic coiled curves. When d < db0 or d > db1, the bistability effect disappears. The nonlinear refraction of SQD-MNP system compared with SQD system is obviously enhanced. Speaking clearly, the maximum value of |Reχeff(3)| of the hybrid system is 3.1, 3.6, 4.3 times that of SQD system, corresponding to R = 5, 7.5, 10 nm, respectively. But the enhancement of nonlinear refraction is negligible. Take R = 7.5 nm for example, Figs. 3(c) and 3(e) show the nonlinear absorption and refraction spectra in the bistability region (12.52 nm ≤ d ≤ 13.09 nm), respectively. The bistable nonlinear absorption response curve traces out a crossed path ①→②→③→④→⑤→⑥→⑦, and the bistable refraction response curve displays a complementary behavior. When the interaction between SQD and MNP is strong enough by adjusting the interparticle distance d, the interaction can result in bistable optical nonlinear absorption and refraction response.

Figure 4(a)
Fig. 4 (a) Population inversion w0 as a function of control field intensity Ωc2 for R = 7.5 nm and d = 12.8 nm with ωc = ωs and (ω10 - ωc)T2 = 1. (b) Nonlinear absorption Imχeff(3) versus Ωc2. (c) Imχeff(3) versus Ωc2 in the bistability region of (b). (d) Nonlinear refraction Reχeff(3) versus Ωc2. (e) Reχeff(3) versus Ωc2 in the bistability region of (d).
shows the bistability of exciton population on intensity of control field Ωc2 for R = 7.5 nm and d = 12.8 nm. Population inversion w0 versus Ωc2 manifests a standard S-shaped curve by adjusting the control field intensity, implying a standard bistable behavior. When the control field intensity slowly increases, the system firstly follows the lower (stable) branch and then jumps to the upper (stable) branch at the critical intensity. With sweeping the intensity back, the system remains on the upper branch and then makes a transition to the lower branch when the intensity passes through the other critical value. A hysteresis loop has been completed. The intermediate branch is unstable. Similar optical hysteresis curve has also been observed by Malyshev et al. in the metal-semiconductor nanodimer when they measured the Rayleigh scattering intensity as a function of excitation intensity [30

30. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011). [CrossRef]

]. Both Imχeff(3) and Reχeff(3) behave in a different manner, and display bistable curves (see Figs. 4b4e). Obviously, the nonlinear absorption and refraction response (Imχeff(3) and Reχeff(3)) could be used to manifest optical bistability and optical hysteresis. Out of the bistability region, the maximum value of |Reχeff(3)| of the hybrid system is 2.8 times that of SQD system.

4. Conclusion

In conclusion, we theoretically investigated the third-order optical nonlinearity of a coherently coupled SQD-MNP system in the presence of a strong control field with a weak probe field. We deduced the analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid, and found the bistable exciton population and the induced bistable nonlinear absorption and refraction response. We showed that the bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. The optical bistability promised possible applications as optical memory cells and optical switches. We hoped that our predictions in this work can be experimentally demonstrated using the optical pump-probe method in the near future.

Acknowledgments

This work was supported by NSFC (10874134, 61008043 and 11004001), National Program on Key Science Research of China (2011CB922201), and Key Project of Ministry of Education of China (708063).

References and links

1.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006). [CrossRef] [PubMed]

2.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11(4), 1556–1560 (2011). [CrossRef] [PubMed]

3.

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7(3), 620–625 (2007). [CrossRef] [PubMed]

4.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]

5.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]

6.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]

7.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007). [CrossRef] [PubMed]

8.

G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33(19), 2212–2214 (2008). [CrossRef] [PubMed]

9.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]

10.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B 84, 081405 (R)(2011).

11.

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79(23), 233309 (2009). [CrossRef]

12.

M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32(15), 2125–2127 (2007). [CrossRef] [PubMed]

13.

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009). [CrossRef] [PubMed]

14.

J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys. 103(10), 104314 (2008). [CrossRef]

15.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B 83(23), 235406 (2011). [CrossRef]

16.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007). [CrossRef]

17.

S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology 21(35), 355501 (2010). [CrossRef] [PubMed]

18.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]

19.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

20.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

21.

J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009). [CrossRef] [PubMed]

22.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]

23.

H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006). [CrossRef] [PubMed]

24.

H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett. 92(25), 251106 (2008). [CrossRef]

25.

X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E 41(7), 1258–1262 (2009). [CrossRef]

26.

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41(18), 185503 (2008). [CrossRef]

27.

V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A 58(2), 1496–1500 (1998). [CrossRef]

28.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008). [CrossRef] [PubMed]

29.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010). [CrossRef]

30.

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84(3), 035314 (2011). [CrossRef]

31.

H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express 18(15), 16175–16182 (2010). [CrossRef] [PubMed]

32.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

33.

R. W. Boyd, Nonlinear Optics (Academic, New York, 2008).

34.

B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61(3), 325–328 (1988). [CrossRef] [PubMed]

35.

R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24(1), 411–423 (1981). [CrossRef]

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(240.6680) Optics at surfaces : Surface plasmons
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 14, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 5, 2012
Published: January 12, 2012

Citation
Jian-Bo Li, Nam-Chol Kim, Mu-Tian Cheng, Li Zhou, Zhong-Hua Hao, and Qu-Quan Wang, "Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems," Opt. Express 20, 1856-1861 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1856


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006). [CrossRef] [PubMed]
  2. N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-Aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011). [CrossRef] [PubMed]
  3. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7(3), 620–625 (2007). [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006). [CrossRef] [PubMed]
  5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6(5), 984–994 (2006). [CrossRef]
  6. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007). [CrossRef] [PubMed]
  7. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99(13), 136802 (2007). [CrossRef] [PubMed]
  8. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett.33(19), 2212–2214 (2008). [CrossRef] [PubMed]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97(14), 146804 (2006). [CrossRef] [PubMed]
  10. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity,” Phys. Rev. B84, 081405 (R)(2011).
  11. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79(23), 233309 (2009). [CrossRef]
  12. M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32(15), 2125–2127 (2007). [CrossRef] [PubMed]
  13. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology20(22), 225401 (2009). [CrossRef] [PubMed]
  14. J. Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103(10), 104314 (2008). [CrossRef]
  15. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83(23), 235406 (2011). [CrossRef]
  16. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys.3(11), 807–812 (2007). [CrossRef]
  17. S. M. Sadeghi, “Tunable nanoswitches based on nanoparticle meta-molecules,” Nanotechnology21(35), 355501 (2010). [CrossRef] [PubMed]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  19. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  21. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009). [CrossRef] [PubMed]
  22. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  23. H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys.125(2), 024707 (2006). [CrossRef] [PubMed]
  24. H. I. Elim, W. Ji, J. Yang, and J. Y. Lee, “Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: evidence for resonant energy transfer by Auger recombination,” Appl. Phys. Lett.92(25), 251106 (2008). [CrossRef]
  25. X. Zhang and G. G. Xiong, “Metal nanoparticle-induced variation of nonlinear optical susceptibility of a CdTe semiconductor quantum dot,” Physica E41(7), 1258–1262 (2009). [CrossRef]
  26. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B41(18), 185503 (2008). [CrossRef]
  27. V. A. Malyshev, H. Glaeske, and K.-H. Feller, “Absence of bistable behavior in the optical response of a dimer,” Phys. Rev. A58(2), 1496–1500 (1998). [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: Double peaked Fano structure and bistability,” Nano Lett.8(7), 2106–2111 (2008). [CrossRef] [PubMed]
  29. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82(19), 195419 (2010). [CrossRef]
  30. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B84(3), 035314 (2011). [CrossRef]
  31. H. Wang and K. D. Zhu, “Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator,” Opt. Express18(15), 16175–16182 (2010). [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  33. R. W. Boyd, Nonlinear Optics (Academic, New York, 2008).
  34. B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett.61(3), 325–328 (1988). [CrossRef] [PubMed]
  35. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A24(1), 411–423 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited