OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 776–786
« Show journal navigation

Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 776-786 (2012)
http://dx.doi.org/10.1364/OE.20.000776


View Full Text Article

Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that highly nonlinear chalcogenide glass nanowire waveguides with near-zero anomalous dispersion should be capable of generating correlated photon-pairs by spontaneous four-wave mixing at frequencies detuned by over 17 THz from the pump where Raman noise is absent. In this region we predict a photon pair correlation of >100, a figure of merit >10 and brightness of ~8×108 pairs/s over a bandwidth of >15 THz in nanowires with group velocity dispersion of <5 ps∙km−1nm−1. We present designs for double-clad Ge11.5As24Se64.5 glass nanowires with realistic tolerance to fabrication errors that achieve near-zero anomalous dispersion at a 1420 nm pump wavelength. This structure has a fabrication tolerance of 80–170 nm in the waveguide width and utilizes a SiO2/Al2O3 layer deposited by atomic layer deposition to compensate the fabrication errors in the film thickness.

© 2012 OSA

1. Introduction

Quantum-correlated photon pairs can serve as either a source of entangled photons or a heralded single-photon source both of which are critical for applications such as linear optical quantum computing, quantum cryptography, and integrated optical quantum devices [1

1. N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003). [CrossRef] [PubMed]

3

3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009). [CrossRef]

]. Recently, spontaneous four-wave mixing (SFWM) has attracted a lot of attention as a natural way to generate correlated photon pairs due to its potential for higher efficiency and compatibility with integrated devices. Correlated photon pairs based on SFWM have been generated in silica fibers [4

4. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004). [CrossRef] [PubMed]

] and silicon waveguides [5

5. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006). [CrossRef] [PubMed]

]. However, the low nonlinear index of silica limits its application for on-chip integration. Silicon has better performance in terms of nonlinear refractive index, but its strong two-photon absorption (TPA) and free carrier absorption (FCA) degrade the device performance [6

6. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007). [CrossRef]

]. In comparison, As2S3 chalcogenide glasses has been reported to have >100 times the nonlinearity of silica and negligible TPA and FCA suggesting they are a good platform for photonic integrated circuits [7

7. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef] [PubMed]

,8

8. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009). [CrossRef] [PubMed]

]. Recently correlated photon pairs were generated in As2S3 waveguides by SFWM [9

9. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011). [CrossRef]

,10

10. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010). [CrossRef] [PubMed]

]. However, as a glass, the correlated photon pairs generated in As2S3 waveguides also experienced spontaneous Raman scattering (SpRS) that limited the degree of quantum correlation. Some strategies were suggested to overcome this limitation [10

10. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010). [CrossRef] [PubMed]

] e.g., using the low Raman gain windows in the As2S3 SpRS spectrum at a frequency shift of about 7.4 THz or by using engineered dispersion and reduced waveguide length to extend the FWM bandwidth to large frequency shifts beyond the range of SpRS.

The latter solution is interesting because it would lead to photon pair generation in a spectral region where SpRS is essentially absent. However, there are significant challenges when fabricating devices to implement this approach. Firstly, SpRS not only leads to noise via the imaginary part of the Raman response function that contributes to SpRS gain, but also modulates the effective nonlinearity which drives SFWM because of the influence of the large negative real part of the Raman response function on the high frequency side of the SpRS gain curve [11

11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007). [CrossRef] [PubMed]

,12

12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).

]. This has the effect of reducing the pair generation rate and thus increasing the frequency shift needed to avoid SpRS which in turn means that even smaller anomalous dispersion is required. This is a real challenge because of the high sensitivity of dispersion to the waveguide dimensions. The need for very small dispersion can be alleviated somewhat by using short waveguides which reduce the total device dispersion. However, in order to obtain adequate SFWM efficiency the waveguides must then have a very high nonlinear parameter, such as that only obtainable by using nanowires with sub-wavelength transverse dimensions. As a result, nanowires made from a material with a high nonlinearity, a low SpRS detuning frequency and negligible TPA and FCA are required to generate correlated photon pairs in glass waveguides at frequencies where SpRS noise can be avoided. The structure must then be designed for almost zero anomalous dispersion and importantly must have a high tolerance to fabrication errors to be manufacturable.

Recently, Ge11.5As24Se64.5 (Ge11.5) chalcogenide glass has been reported with a nonlinear refractive index 3 times higher than that of As2S3 with negligible TPA and FCA [13

13. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]

]. This material has been used to fabricate glass nanowire waveguides with a nonlinear parameter as high as 140 W−1m−1 at 1550 nm and moderate losses of ≈1.5 dB/cm in the fundamental TM mode [14

14. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010). [CrossRef] [PubMed]

,15

15. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010). [CrossRef] [PubMed]

]. Such a high nonlinearity allows high SFWM efficiency to be obtained in a short length (<1 cm) somewhat reducing the limitation on the dispersion. Furthermore, Ge11.5As24Se64.5 glass has a significantly narrower SpRS detuning frequency compared with As2S3 due to the substitution of higher mass Se atoms for S in the glass matrix. This suggests it is a better choice for generating correlated photon pairs at frequencies beyond the SpRS noise.

In this paper, we have analyzed correlated photon pair generation in Ge11.5 nanowire waveguides as a function of detuning from the pump frequency. Our analysis includes the effects of dispersion, nonlinearity and both the real and imaginary parts of response function for SpRS. We show that the best figure of merit, defined as the ratio of pair generation rate from SFWM to the noise generated by SpRS, is achieved for frequency shifts greater than 17 THz above the pump. In this region a photon pair correlation >100 is achievable in theory, together with a figure of merit >10 at a pair generation rate >8 × 108 pairs/s.

In order to access this region we have developed designs for Ge11.5 nanowires with near-zero anomalous dispersion for the fundamental TM mode that have a high tolerance to fabrication errors. Because the nonlinear parameter of these nanowires is large, a short waveguide can be used, which means the GVD needs to lie between zero and 7 ps∙km−1nm−1 as we discuss later. Since it is important that the correlated photons are generated at frequencies where high detection efficiency is available from an InGaAs single photon detector, the pump wavelength was chosen to be 1420 nm and this leads to the generation of photon pairs at wavelengths of 1314 nm (signal) and 1544 nm (idler).

From our analysis of the waveguide design, we found that low dispersion Ge11.5 nanowires can have a high tolerance to errors in the waveguide width, but are then very sensitive to waveguide thickness. As a result, we developed a cladding design that uses a dual-layer to compensate for fabrication errors in the waveguide thickness. This design employs a thin layer of SiO2 or Al2O3 between the waveguide and a top cladding with a refractive index of 1.52. The implementation requires the exact waveguide thickness to be determined post fabrication using highly accurate metrology, such as optical profilometry, with nm precision. The dual layer cladding then allows the GVD to be tuned to become near-zero by depositing a layer whose thickness can be controlled with high accuracy using a process such as atomic layer deposition (ALD) [16

16. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010). [CrossRef] [PubMed]

].

2. Correlated photon-pair generation with CW pump

In order to analyze the quality of correlated photon-pair generation by SFWM in Ge11.5 nanowires, we need to treat the influence of SpRS on the SFWM carefully because this contributes not only Raman gain, arising from the imaginary part of Raman response function, but also affects the nonlinear phase modulation for SFWM via the real part of the response function [11

11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007). [CrossRef] [PubMed]

,17

17. X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011). [CrossRef]

]. As very low pump power is used for correlated photon pair generation, the undepleted pump approximation can be used in the analysis. In addition, the power of idler has a negligible influence on the pump. We, therefore, deduced Eqs. (1), (2) and (3) shown below from Refs. [11

11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007). [CrossRef] [PubMed]

,17

17. X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011). [CrossRef]

,18

18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006). [CrossRef] [PubMed]

] and these describe the interaction between the pump, signal and idler including SpRS:
Apz+i2β22Apt2+α2Ap=iγ[|Ap|2+(2+fR(Re[h˜R(Ω)]1))|As|2+(2+fR(Re[h˜R(Ω)]1))|Ai|2]ApγIm[h˜R(Ω)]fR|As|2ApγIm[h˜R(Ω)]fR|Ai|2Ap,
(1)
Asz+i2β22Ast2+α2As=iγ[|As|2+(2+fR(Re[h˜R(Ω)]1))|Ap|2]As+iγ[1+fR(Re[h˜R(Ω)]1)]Ap2Ai*γIm[h˜R(Ω)]fR|Ap|2AsγIm[h˜R(Ω)]fRAp2Ai*,
(2)
Aiz+i2β22Ait2+α2Ai=iγ[|Ai|2+(2+fR(Re[h˜R(Ω)]1))|Ap|2]Ai+iγ[1+fR(Re[h˜R(Ω)]1)]Ap2As*γIm[h˜R(Ω)]fR|Ap|2AiγIm[h˜R(Ω)]fRAp2As*,
(3)
Here the subscripts p, s and i refer to the pump, signal, and idler, respectively; Ω = ωsp is the frequency detuning from signal to pump; β2 is the second order dispersion; α is the linear loss, γ is the nonlinear parameter; fR = 0.13 is fractional Raman factor of Ge11.5; and hR(Ω) is the Fourier transform of the Raman response function hR(t). From examination of Eqs. (1), (2) and (3), we find that Im[hR(Ω)] appears in real part of the equation and contributes a term representing loss or gain and thus determines the production of SpRS noise during the generation of correlated photon pairs. At the same time, the term containing Re[hR(Ω)] contributes to the imaginary part of the equation and modifies the nonlinear coefficient for cross-phase modulation (XPM) and energy conversion between the pump, signal and idler waves. The SFWM efficiency depends not only on the phase mismatch term between the propagation constants of the pump, signal and idler waves, but also on the effects of self-phase modulation [SPM] and XPM. As a result, we need to treat Re[hR(Ω)] carefully in SFWM whilst Im[hR(Ω)] is not so critical as it contributes to Raman gain appearing in all of the terms affecting SFWM. Furthermore, the phase matching condition for SFWM no longer contains only the dispersion and nonlinear parameters but also the real part of Raman function Re[hR(Ω)]. Thus, the phase matching condition which can be directly deduced from Ref. [11

11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007). [CrossRef] [PubMed]

] has the form

4γP04γP0ƒ(Re[hR(ω)]1)<2β2Δω2<0,
(4)

In Fig. 1
Fig. 1 Fourier transform of the Raman response function hR of Ge11.5, As2S3 and SiO2. (a) The imaginary part Im[hR(Ω)]. (b) The real part Re[hR(Ω)].
, we plot Im[hR(Ω)] and Re[hR(Ω)] for Ge11.5, As2S3 and silica deduced from the Raman gain spectrum for these materials via the Kramers-Kronig relations. The Raman gain spectrum of Ge11.5 and As2S3 were measured by Raman spectroscopy whilst that for SiO2 was obtained from Ref. [12

12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).

]. The main peak of Im[hR(Ω)] for Ge11.5 has the lowest frequency shift of these three materials making it the best choice for photon pair generation using SFWM in a region of the spectrum beyond the Raman peak where SpRS noise should be absent. In addition, there are large negative values of Re[hR(Ω)] for all three materials which decrease the SFWM conversion efficiencies at detunings just beyond the Raman gain peak. However Re[hR(Ω)] for Ge11.5 recovers at the lowest detuning and thus offers the greatest potential for broad bandwidth SFWM beyond ≈10 THz.

As mentioned above, SFWM in Ge11.5 nanowires involves not only the phase mismatch and the nonlinear phase modulation, but also the real part of Raman response function Re[hR(Ω)]. Thus the expression for the spectral density of the photon flux Gi(υ) should include Re[hR(Ω)] and can be calculated according to [11

11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007). [CrossRef] [PubMed]

]:
Gi(υ)=Pi(z)Ps(z)=|qKq(iR)/tanh(rRPL)|2,
(5)
whereR=K(2qK); q(Ω) = 1 – fR + fRRe[hR(Ω)]; K = –k/(2γP) is the ratio of the phase mismatch term arising from dispersion to the nonlinear term; k(Ω) = β2Ω2 + β4Ω4/12, where β4 is the fourth order dispersion of the waveguide; and where γ≈140 W−1m−1 for a Ge11.5 nanowire [14

14. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010). [CrossRef] [PubMed]

]. The waveguide length L was chosen to be 0.5 cm because of the very high value of γ can supply enough nonlinearity in this short length for photon-pair generation. In addition, such a short waveguide also leads to broader SFWM bandwidth for the same dispersion.

The photon pair generation rate can be calculated according to [10

10. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010). [CrossRef] [PubMed]

] as SSFWM(υ)≈ΔυGi(υ) where υ = Ω/ is the frequency detuning. We chose Δυ≈0.12 THz corresponding to a 1 nm wide band-pass filter.

Shown in Fig. 2
Fig. 2 Photon pair generation rate with γPL = 0.1 and GVD of 15, 5 and 1.5 ps∙km−1nm−1Blue curve is for SFWM including Re[hR(Ω)]. Red curve is for pure SFWM. The frequency detuning is for pump-idler detuning ωip = ωps. G/s is for 1 × 109 pairs per second.
is the calculated photon generation rate (PGR) for pure SFWM and SFWM including Re[hR(Ω)] with different values of GVD of 15, 5 and 1.5 ps∙km−1nm−1 and γPL = 0.1 (P≈0.14 W). From Fig. 2, we can see that below 5 THz pure SFWM and SFWM including Re[hR(Ω)] have similar PGR. This is because Re[hR(Ω)]≈1 in this region as shown in Fig. 1(b). Between 5 and 7.5 THz, there is a dramatic increase in PGR because Re[hR(Ω)] increases in this region and this enhances the nonlinear phase modulation. From 7.5 to 12 THz, Re[hR(Ω)] becomes large and negative which reduces the nonlinear phase modulation leading to a dramatic decrease in the PGR. Beyond 12 THz Re[hR(Ω)] recovers towards zero and remains constant for higher frequencies. The PGR spectrum becomes flat at a level of 66%–75% of the PGR obtained from pure SFWM. This region has very small Raman noise according to Fig. 1(a) and thus has great potential as a source of correlated photon pairs. The bandwidth over which the PGR spectrum remains flat is mainly controlled by the waveguide dispersion. With GVD of 1.5, 5 and 15 ps∙km−1nm−1, the bandwidth is ≈30, 20 and 8 THz respectively. This indicates the importance of obtaining near-zero anomalous dispersion to achieve correlated photon pairs at frequencies beyond the Raman noise. We choose the 5 ps∙km−1nm−1 GVD in the following calculations as a value that is realistic for the double clad dispersion engineered waveguides discussed later.

3. Near-zero anomalous dispersion waveguides

In order to produce a design for a nanowire with near-zero anomalous dispersion with a high tolerance to fabrication errors, we need to firstly consider the fabrication process and identify where the main errors occur. Figure 4(a)
Fig. 4 (a) A standard single clad Ge11.5 waveguide structure. (b) The GVD for a 0.625 µm wide waveguide. Dark blue curve is the contour for GVD of 7 ps∙km−1nm−1; light blue curve is the zero-dispersion contour; the black line shows the pump wavelength at 1.42 µm. (c) the GVD for a 0.58 µm film thickness and 0.61, 0.625 and 0.64 µm waveguide width.
shows a standard waveguide structure and its refractive index profile. In the fabrication process a Ge11.5 film is deposited onto an oxidized silicon wafer by thermal evaporation at a rate ~0.2–0.3 nm/s to a thickness of 500–650 nm with an uncertainty of ~±10–15 nm. The precise film thickness can be measured after deposition to better accuracy (±5 nm) using a dual angle spectroscopic reflectometer (SCI Filmtek 4000) or post etching with an optical profiler to an accuracy of ±2 nm. The width of the waveguides is determined by the lithography and etching processes. In those processes the waveguides are first patterned onto 250 nm ZEP by electron-beam lithography (EBL) with 20 µm aperture and 30 kV acceleration voltage. The fixed beam moving stage (FBMS) method was applied to remove all the stitching errors between different write-fields. Following this inductively coupled plasma etching is used to transfer the waveguide patterns into the Ge11.5 films. At the end of process, an inorganic polymer glass (IPG) is spin-coated onto the waveguides as a top cladding with a refractive index of 1.52 at 1420 nm. During fabrication, the widths of waveguides can vary from the design values due to errors in the pattern width introduced during EBL and due to process bias during ICP etching. These create an uncertainty of ~±15–20 nm in the waveguide width. Hence the fabrication errors that affect dispersion arise from errors in both the thickness of the deposited film and the width of the nanowires.

The results are shown in Fig. 4(b) where the vertical black line indicates a wavelength of 1420 nm and the light and dark blue curves are the contours for zero-dispersion and a GVD of 7 ps∙km−1nm−1 respectively. From Fig. 4(b), we find that the zero-dispersion contour intercepts the 1420nm line at thicknesses of 0.56 and 0.6 µm and the maximum GVD is 5 ps∙km−1nm−1 at 1420 nm at a thickness of 0.58 µm. This shows that if there was no error in the waveguide width, the tolerance on film thickness is ±20 nm and this is larger than the ±15 nm fabrication tolerance associated with film deposition making a GVD < 5 ps∙km−1nm−1 achievable.

In order to analyze whether such structure is practical, we studied the tolerance to fabrication errors in the waveguide width for this structure and this is shown in Fig. 4(c). Figure 4(c) plots the GVD of 0.58 µm thick waveguides with different widths of 0.61, 0.625 and 0.64 µm respectively and shows that with +15 nm fabrication error on waveguide width, the GVD has increased up to 12 ps∙km−1nm−1 at 1420 nm exceeding the requirement of a maximum GVD of 7 ps∙km−1nm−1. With the −15 nm fabrication error, the GVD decreased to −3.5 ps∙km−1nm−1 breaking the requirement for anomalous dispersion. Since ±20 nm errors can result from the fabrication process this structure shows poor tolerance to errors in the waveguide width making it difficult to achieve low and predictable anomalous dispersion.

As a result, to identify a structure with better tolerance to fabrication errors, we have to study the GVD as a function of both waveguide width and thickness. This is shown in Fig. 5(a)
Fig. 5 (a) GVD at 1.42 µm as a function of film thickness and waveguide width. (b) GVD as a function of film thickness in region I. (c) GVD as a function of waveguide width in region II.
. Here the dark and light blue curves indicate 7 ps∙km−1nm−1 and zero dispersion respectively and black curves are for 20, −10 and −20 ps∙km−1nm−1 as indicated. From Fig. 5(a), there are two regions of interest. Region I is located at film thicknesses between 0.56 and 0.6 µm and waveguide width between 0.6 and 0.65 µm. In this region, we observed a slow dependence of GVD on film thickness. More details are shown in Fig. 5(b), where for the 0.625 µm wide waveguide, a >40 nm change in film thickness from 0.56 to 0.6 µm leads to only 5 ps∙km−1nm−1 variation on GVD from 0 to 5 ps∙km−1nm−1. In fact, this is the same structure as studied in Fig. 4 that was very sensitive to waveguide width. However, an interesting observation from Fig. 5(b) is that the GVD curves contain a local maximum and their shape is only weakly dependent on width, although the maximum GVD value shifts quite rapidly. This presence of this local maximum explains the insensitivity to film thickness and results in the GVD varying by <7 ps∙km−1nm−1 from the peak value for >50 nm change in thickness.

The second interesting region II has similar features, but this time the GVD varies only slowly with waveguide width. According to Figs. 5(a) and 5(c), we find that for a film thickness of 0.625 µm, the GVD varies between zero and 7 ps∙km−1nm−1 for a 170 nm change in waveguide width from 0.67 to 0.85 µm. The tolerance to waveguide width is much larger than the estimated fabrication errors making them negligible. However, the GVD is now sensitive to film thickness as shown in Fig. 5(c), where the peak GVD for a 0.61 µm wide waveguide increases to 18 ps∙km−1nm−1 and that for the 0.64 µm wide waveguide decreased to −6 ps∙km−1nm−1 which is far larger than can be tolerated. As was the case of Fig. 5(b) the existence of a local maximum explains the insensitivity to width and all structures have over 170 nm tolerance to waveguide width for <7 ps∙km−1nm−1 variation from the peak value of GVD. Region II is of more interest because of its much bigger tolerance to fabrication errors in the width. This can be understood because the continuity conditions for the fundamental TM mode mean that the effective index is mainly determined by the position of the horizontal surfaces in the structure and hence varies rapidly with film thickness. On the other hand the TM mode index is much less sensitive to the positions of the vertical surfaces leading a low sensitivity to waveguide width.

By studying Fig. 5(a), we can see there is no region that lies close to the zero-dispersion contour that is sufficiently tolerant to fabrication errors in both film thickness and waveguide width to allow the reliable manufacture of a low dispersion structure. As a result we need a new approach. We started by choosing region II for our initial structure. What is now needed is a method to compensate fabrication errors in film thickness and which allows the maximum GVD to be tuned post fabrication to between zero and 7 ps∙km−1nm−1.

We found that it could be achieved by inserting a uniform layer between the waveguide and the upper cladding so that the GVD could be tuned by varying the thickness of this additional layer. Two variations on this procedure are shown in Figs. 6(a), (b) and (c)
Fig. 6 (a) Waveguide with an inserted layer of SiO2. (b) GVD as a function of SiO2 layer thickness and waveguide width with 0.64 µm initial film thickness. (c) GVD as a function of waveguide width with 0.64µm initial film thickness. (d) Waveguide with an inserted layer of Al2O3. (e) GVD as a function of Al2O3 layer thickness and waveguide width with 0.61 µm initial film thickness. (f) GVD as a function of waveguide width with 0.61 µm initial film thickness.
where a silica layer was inserted to compensate for too thick a waveguide, and Figs. 6(d), (e), (f) where the waveguide was too thin and an alumina layer was inserted. Figure 6(a) shows the structure and index profile when using the silica layer. In Fig. 6(b), we calculated the GVD as a function of waveguide width and SiO2 layer thickness assuming the waveguide thickness was 0.64 µm: +15 nm greater than the target thickness of 0.625 µm. In this case the GVD was originally −6 ps∙km−1nm−1. By inserting SiO2 whose refractive index is lower than that of IPG cladding (1.52), the GVD increases from negative to positive values as with the thickness of the SiO2 layer is increased. This indicated that the positive errors in the film thickness could be compensated by tuning the TM mode index using the silica layer. More details can be seen in Fig. 6(c) which demonstrates that using a 40 nm SiO2 layer, the maximum of GVD value has increased to 2.5 ps∙km−1nm−1 with over 80 nm tolerance to waveguide width for GVD between zero and 2.5 ps∙km−1nm−1. With a 50 nm SiO2 layer, the peak value of GVD increased to 6.5 ps∙km−1nm−1 and over 150 nm tolerance to waveguide width is achieved.

When the waveguide is too thin, for example 0.61 µm corresponding to −15 nm error relative to the targeted film thickness of 0.625 µm, the peak value of GVD far exceeds the maximum of 7 ps∙km−1nm−1. According to Figs. 6(d) and (e), however, inserting a layer of Al2O3 whose refractive index is higher than that of the IPG cladding again allows the TM mode index to be tuned but in this case the GVD decreases as the thickness of the Al2O3 layer increases thereby compensating the errors caused by the thinner waveguide film. From Fig. 6(f), using 30 nm of Al2O3 reduced the peak dispersion to 4 ps∙km−1nm−1 and achieves over 130 nm tolerance to waveguide width.

Although this method can be used to compensate the fabrication error in Ge11.5 waveguide thickness, this additional layer also has an error tolerance in its thickness. According to Figs. 6(b) and (e), we found that SiO2 and Al2O3 layers need to be controlled to a tolerance of 15 nm and 8 nm respectively. The reason that Al2O3 has poorer fabrication error tolerance than SiO2 is because the refractive index contrast between Al2O3 and IPG is much larger than that between SiO2 and IPG leading a more rapid change of GVD with Al2O3 layer thickness. In fractional terms the thickness of either film has to be controlled to 20–30% which is technologically feasible using various different deposition processes.

For example, although the fabrication tolerance on the thickness of the SiO2 or Al2O3 layers is small in absolute terms, they can be realized using atomic layer deposition (ALD). This technology allows film thickness to be controlled on the atomic scale and produces conformal coatings on structured surfaces [16

16. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010). [CrossRef] [PubMed]

]. ALD is available for a variety of materials including Al2O3, SiO2, ZnO, etc. It is a surface self-limiting process where film growth terminates after deposition of a single layer of atoms. Hence it allows the growth of thin amorphous layers with nanometer precision. ALD, therefore, allows us to add a layer of SiO2 or Al2O3 with accurately controlled thickness to modulate the refractive index profile of waveguide cladding as illustrated in Fig. 6. This should allow us to fabricate a waveguide with near-zero anomalous dispersion insensitive to the waveguide width by compensating the fabrication errors in film thickness with a high precision process. This method relies on accurate measurement of the waveguide thickness post deposition and the choice of a target thickness that allows either SiO2 or Al2O3 be deposited by ALD to tune the dispersion in the appropriate direction. In our experience optical profilometry can achieve the required measurement accuracy in films after processing.

4. Conclusion

We have designed Ge11.5As24Se64.5 glass nanowire waveguides with near-zero anomalous dispersion at 1420 nm that can be made tolerant to fabrication errors through the use of a double-cladding. This structure leads to a large tolerance to waveguide width of 80–170 nm and utilizes a SiO2 or Al2O3 layer deposited by atomic layer deposition to compensate any fabrication errors in the waveguide thickness. According to our analysis, nanowires with near-zero anomalous dispersion can generate correlated photon-pairs by spontaneous four-wave mixing with over 17 THz detuning from the pump in a region where Raman noise is absent. In these regions the photon pair correlation is predicted to be >100; the figure of merit >10; and source brightness of ~8 × 108 pairs/s. By fabricating a waveguide with group velocity dispersion of <5 ps∙km−1nm−1 these parameters are maintained over a bandwidth of >15 THz.

Acknowledgments

This research was conducted by the Australian Research Council Centre of Excellence for Ultrahigh Bandwidth Devices for Optical Systems (project number CE110001018).

References and links

1.

N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003). [CrossRef] [PubMed]

2.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]

3.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009). [CrossRef]

4.

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004). [CrossRef] [PubMed]

5.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006). [CrossRef] [PubMed]

6.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007). [CrossRef]

7.

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef] [PubMed]

8.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009). [CrossRef] [PubMed]

9.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011). [CrossRef]

10.

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010). [CrossRef] [PubMed]

11.

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007). [CrossRef] [PubMed]

12.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).

13.

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]

14.

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010). [CrossRef] [PubMed]

15.

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010). [CrossRef] [PubMed]

16.

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010). [CrossRef] [PubMed]

17.

X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011). [CrossRef]

18.

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006). [CrossRef] [PubMed]

19.

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite-difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]

20.

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994). [CrossRef]

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.4180) Quantum optics : Multiphoton processes
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 19, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 23, 2011
Published: January 3, 2012

Citation
X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, "Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis," Opt. Express 20, 776-786 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-776


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett.91(3), 037903 (2003). [CrossRef] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
  3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics3(6), 346–350 (2009). [CrossRef]
  4. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express12(16), 3737–3744 (2004). [CrossRef] [PubMed]
  5. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14(25), 12388–12393 (2006). [CrossRef] [PubMed]
  6. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  7. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  8. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 3514–3520 (2009). [CrossRef] [PubMed]
  9. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett.98(5), 051101 (2011). [CrossRef]
  10. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express18(15), 16206–16216 (2010). [CrossRef] [PubMed]
  11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express15(13), 8104–8114 (2007). [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).
  13. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  14. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010). [CrossRef] [PubMed]
  15. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010). [CrossRef] [PubMed]
  16. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev.110(1), 111–131 (2010). [CrossRef] [PubMed]
  17. X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B28(11), 2777–2784 (2011). [CrossRef]
  18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express14(11), 4786–4799 (2006). [CrossRef] [PubMed]
  19. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite-difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008). [CrossRef]
  20. P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol.12(3), 487–494 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited