OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22290–22297
« Show journal navigation

Polarization properties of surface plasmon enhanced photoluminescence from a single Ag nanowire

Min Song, Gengxu Chen, Yan Liu, E Wu, Botao wu, and Heping Zeng  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22290-22297 (2012)
http://dx.doi.org/10.1364/OE.20.022290


View Full Text Article

Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metallic nanowires are of great research interest due to their applications in surface plasmon polariton coupling of light. The efficiency is much dependent on the polarization of the light due to the phase matching requirement in the light-surface plasmon polariton coupling. By scanning confocal microscope, the photoluminescence from a single Ag nanowire was demonstrated strongly dependent on the excitation laser polarization, showing good consistency with the theoretical simulation. Meanwhile strong avalanche photoluminescence from a single Ag nanowire was observed when the excitation laser was polarized along the long axis of the Ag nanowire. The photoluminescence emission exhibited a polarization-sensitive spatial distribution. This may stimulate promising applications in designing polarization-controllable nanoscale plasmonic devices.

© 2012 OSA

1. Introduction

One-dimensional metallic Ag or Au nanowires (NWs) can be used to guide photons at visible and near-infrared range by coupling electromagnetic wave to collective electron oscillation on their surface which is known as surface plasmon polariton (SPP) [1

1. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000). [CrossRef]

8

8. W. H. Wang, Q. Yang, F. G. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011). [CrossRef] [PubMed]

]. Plasmonic metallic NWs serve as waveguides for plasmon propagation, provide the possibility to break the diffraction limit and localize the electromagnetic energy to scales less than λ/10 [9

9. H. R. Raether, Surface Plasmon (Springer-Verlag, 1988).

,10

10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

], which have been thoroughly investigated in recent studies reporting on SPP propagation [1

1. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000). [CrossRef]

3

3. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [CrossRef] [PubMed]

,5

5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

,8

8. W. H. Wang, Q. Yang, F. G. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011). [CrossRef] [PubMed]

], SPP damping along NWs [7

7. D. Solis Jr, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E. R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010). [CrossRef] [PubMed]

,11

11. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009). [CrossRef] [PubMed]

14

14. P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12(2), 661–665 (2012). [CrossRef] [PubMed]

], the coupling and splitting of SPP with light [15

15. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007). [CrossRef] [PubMed]

19

19. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010). [CrossRef] [PubMed]

], surface enhanced Raman scattering [20

20. Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009). [CrossRef] [PubMed]

,21

21. C. L. Du, Y. M. You, T. Chen, Y. Zhu, H. L. Hu, D. N. Shi, H. Y. Chen, and Z. X. Shen, “Individual Ag nanowire dimer for surface-enhanced Raman scattering,” Plasmonics 6(4), 761–766 (2011). [CrossRef]

], and the interaction of SPP with single-photon emitters such as quantum dots [22

22. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]

,23

23. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009). [CrossRef] [PubMed]

] or color centers in nanodiamonds [24

24. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009). [CrossRef]

,25

25. J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express 19(21), 20991–21002 (2011). [CrossRef] [PubMed]

]. Furthermore, plasmonic NWs provide an appealing nanophotonic platform for miniaturization of optical signal processing and sensing devices at subwavelength scale and integration of photonic circuits with external devices to overcome the fundamental data transmission rates and bandwidth limitations in conventional electrical technology [26

26. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

30

30. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Naowires electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006). [CrossRef]

].

Generally, metallic NWs are synthesized by two methods: template-directed approaches [31

31. D. Ugarte, A. Chatelain, and W. A. de Heer,“Nanocapillarity and chemistry in carbon nanotubes,” Science 274(5294), 1897–1899 (1996). [CrossRef] [PubMed]

34

34. R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004). [CrossRef]

] and chemical synthesis [35

35. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003). [CrossRef]

39

39. X. X. Li, L. Wang, and G. Q. Yan, “Review: recent research progress on preparation of silver nanowires by soft solution methods and their applications,” Cryst. Res. Technol. 46(5), 427–438 (2011). [CrossRef]

]. The plasmons supported by the metallic nanowires fabricated by templates usually suffer large losses due to scattering from the grain boundaries and rough surfaces of NWs [2

2. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]

]. On the other hand, chemical synthesis has been demonstrated as a simple and inexpensive route for the bottom-up preparation of metallic NWs with very smooth surfaces and without grain boundaries [35

35. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003). [CrossRef]

39

39. X. X. Li, L. Wang, and G. Q. Yan, “Review: recent research progress on preparation of silver nanowires by soft solution methods and their applications,” Cryst. Res. Technol. 46(5), 427–438 (2011). [CrossRef]

]. Chemically grown Au NWs have in principle the same advantages as Ag NWs, but Au is intrinsically lossier, especially at optical frequencies. Thus, the studies about plasmonic activities and synthetic work of Ag NWs are always flourishing [1

1. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000). [CrossRef]

39

39. X. X. Li, L. Wang, and G. Q. Yan, “Review: recent research progress on preparation of silver nanowires by soft solution methods and their applications,” Cryst. Res. Technol. 46(5), 427–438 (2011). [CrossRef]

]. It is known that Ag or Au nanostructures can emit strong fluorescence under visible light excitation, which is believed as a result of radiative recombination of Fermi level electrons and sp- or d-band holes [40

40. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001). [CrossRef] [PubMed]

42

42. E. Wu, Y. Z. Chi, B. T. Wu, K. W. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. P. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructure,” J. Lumin. 131(9), 1971–1974 (2011). [CrossRef]

]. As for Ag NWs, near-infrared and visible photoluminescence (PL) from Ag NW arrays and assembles has been observed under visible laser excitation [43

43. H. M. Gong, Z. K. Zhou, S. Xiao, X. R. Su, and Q. Q. Wang, “Strong near-infrared avalanche photoluminescence from Ag nanowire arrays,” Plasmonics 3(2–3), 59–64 (2008). [CrossRef]

,44

44. R. Sarkar, P. Kumbhakar, A. K. Mitra, and R. A. Ganeev, “Synthesis and photoluminescence properties of silver nanowires,” Curr. Appl. Phys. 10(3), 853–857 (2010). [CrossRef]

]. However, there were few reports on the PL from single Ag NWs [45

45. D. A. Clayton, D. M. Benoist, Y. Zhu, and S. L. Pan, “Photoluminescence and spectroelectrochemistry of single ag nanowires,” ACS Nano 4(4), 2363–2373 (2010). [CrossRef] [PubMed]

]. More importantly, as one kind of one-dimentional nanostructure, the polarization properties of PL from a single Ag NW has not been studied in detail.

In this letter, PL properties from a single Ag NW with the diameter about 130 nm and perfect surface quality were studied under excitation at 532 nm. The PL intensity from a single Ag NW showed strong dependence on the polarization direction of the excitation laser. Furthermore, the excitation power dependence and emission polarization properties of the PL from a single Ag NW were investigated. An elongated single Ag NW emitted a strong avalanche PL under excitation polarized along its long axis, suggesting strong surface plasmon coupling effect between light and resonant free electrons in the NW surface. The PL emission was revealed to exhibit a polarization-sensitive spatial distribution.

2. Experimental section

The Ag NWs were synthesized as described in detail as following. 5 mL of ethylene glycol (EG) were stirred in a glass vial, suspended in an oil bath (150 °C). After the EG was heated for 1 h under stirring, 40μ L of a 4 mM copper(II) chloride (CuCl2) solution in EG was injected into the heated EG. After an additional 15 min, 1.5 mL of a 0.094 M AgNO3 solution in EG was injected into the hot solution followed immediately by 1.5 mL of a 0.147 M PVP (molecular weight Mw≈55000, concentration expressed in terms of monomer) solution in EG added dropwise over a period of 2 min. The reaction was continued at 150 °C for another 1 h and quenched in water. The reaction products were washed with acetone, collected by centrifugation at about 2000 rpm for 20 min, and then washed with ethanol for three times, finally dispersed in ethanol for further use. The morphology and size of the obtained Ag NWs were characterized by a scanning electron microscopy (SEM) (JEOL JSM-5610LV), and optical absorption spectra were measured using a UV-Vis-NIR spectrophotometer (JASCO V-570). Samples for the PL measurement of single Ag NW were prepared by spin-coating the dilute suspension of Ag NWs in ethanol on clean glass substrates, and then coated immediately with polymethyl methacrylate (PMMA) thin films of about 40 nm thickness by spin-coating method to avoid the oxidation of Ag NWs in air.

Using a home-made scanning confocal microscope system, spatial polarization properties of the PL from a single Ag NW were investigated. A 532 nm solid-state laser (continuous wave) was used as the excitation source. A polarizer was added at the output of the laser to force a linear polarization and the polarization direction was tuned by the half-wave-plate behind the polarizer before the microscope objective. The laser beam was focused into diffraction-limited spot on one end of a single Ag NW by a high numerical aperture microscope objective (NA = 0.95, × 100). PL from a single Ag NW was collected by the same microscope objective, sent to the detector after spatial and spectral filtering, and then detected by a silicon avalanche photodiode (APD). To measure of emission polarization contrast, a half-wave-plate and a polarizer were placed before the detector. By rotating the half-wave-plate in front of the detector the polarization of PL emitted from the single Ag NW could be checked.

3. Results and discussion

Figure 1(a)
Fig. 1 (a) SEM image of Ag NW assembles synthesized by polyol reduction of AgNO3. (b) SEM image of single Ag NW, revealing the very smooth surface. Inset: an SEM image of one end of Ag NW.
shows a typical SEM image of fabricated Ag NWs on a silicon wafer. Ag NWs could be well dispersed with a low density and spin-coated on the substrates, which facilitated the measurement of PL from a single Ag NW. As shown in Fig. 1(a), the length of Ag NWs varied from few to tens of micrometers. On the other hand, in the enlarged SEM image of Fig. 1(b), the NWs exhibited a very smooth surface and were quite uniform in their dimensions with an average diameter of ~130 nm. The end of the individual Ag NW exhibited a pyramid structure as shown in the inset of Fig. 1(b), showing that the silver NWs were grown from seeds deriving from twinned bicrystalline particles of decahedral shape [35

35. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003). [CrossRef]

].

Surface plasmon resonance property of Ag NWs was characterized in Fig. 2
Fig. 2 Extinction spectrum of Ag NWs in ethanol solution.
. The dilute suspension of Ag NWs in ethanol was held in a quartz cell of path length 1 cm and the spectrum was recorded by a UV-Vis-NIR spectrophotometer. Two extinction peaks around 350 and 395 nm could be observed, which corresponds to the quadruple resonance excitation and transverse surface plasmon resonance (TSPR) of Ag NWs, respectively [46

46. J. J. Mock, S. J. Oldenburg, D. S. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002). [CrossRef]

]. We observed no extinction peaks from the longitudinal surface plasmon resonance (LSPR) of Ag NWs up to 2.5 μm. Since the aspect ratio of the Ag nanowires was sufficiently large, the plasmon resonances associated with the long and short axes are entirely decoupled and accordingly, the peaks corresponding to LSPR of nanowires disappeared [47

47. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003). [CrossRef]

].

FDTD was performed to reveal the local electric field strength contours of a single Ag NW using FDTD Solutions 7.5 (Lumerical Solutions, Inc). The simulation was conducted on a cubic grid with a discretization step of 10 nm with perfectly-matched layer conditions imposed at the boundaries. A plane wave with electric field intensity of E0 was used to excite one end of a single Ag NW and computed its evolution along the long axis of the Ag NW according to the Maxwell’s equations. The Ag NW was considered as a cylinder capped with an oblate spheroid at each end. The diameter of the cylinder was 130 nm, and the length was about 6 μm, which very closed to the footprint size as Ag NW in Fig. 3(a). The semimajor and semiminor axes of the spheroid were 65 and 50 nm, respectively. The Ag NW was placed on a thin substrate with refractive index n = 1.47, matching that of the silica glass substrate used in the experiment. The local electric field enhancement was simulated with different incident light polarization directions. Figure 4(a)
Fig. 4 Polarization dependence of the average electric field intensity enhancement. (a) Electric field intensity contours obtained from the FDTD calculations on a single Ag NW under the parallel and perpendicular excitation polarization relative to the long axis of the Ag NW. The field intensity is at the logarithmic scale. (b) Field intensity enhancement factor (solid circles) as a function of the excitation polarization direction relative to the long axis of the Ag NW. The red line is a sinusoid fit.
shows the average enhancement field contours of the local electric field intensity of a single Ag NW when the incident light was parallel and perpendicular to the long axis of the Ag NW. For the parallel incident polarization light, the longitudinal SPP mode was excited at the left end of the Ag NW, and propagated along its long axis up to the right end. The radiation recombination transition of electron-hole along the whole NW could be activated and produce strong PL. For the perpendicularly polarized incident light, the transverse SPP mode was excited and only located around the excited end of the Ag NW. Furthermore, the average enhancement factor of the electric field intensity for the parallel incident polarization was about 15 times larger than that for the perpendicular one. Thus, the PL intensity from a single Ag NW excited in the parallel incident light polarization was significantly stronger than that excited in the perpendicular one. Figure 4(b) illustrates the plots of the average enhancement factor of the electric field intensity of a single Ag NW as a function of the incident light polarization. We defined 0° for the incident light polarization direction along the long axis of the Ag NW. As the excitation laser was polarized along (0° or 180°) or perpendicular (90° or 270°) to the long axis of the Ag NW, the largest or smallest average enhancement factor could be achieved, respectively. The experimental results exhibited an excellent agreement with the FDTD simulation on local electric filed enhancement (Figs. 3 and 4).

4. Conclusion

In summary, we have observed that the PL from a single Ag NW was very sensitive to the polarization direction of incident excitation light and varied with a period of 180°, which was in good agreement with the results of FDTD simulation. Strong avalanche PL from a single Ag NW was found when the polarization direction of incident light was along the length axis of single Ag NW due to strong surface plasmon coupling effect. The emission polarization investigation indicated that the spatial distribution of the PL intensity was polarization sensitive. The polarization feature of the PL from a single Ag NW plasmonic waveguide may be useful in applications of nanophotonics, polarization-dependent image, sensing and biolabeling.

Acknowledgments

This work was funded in part by the National Nature Science Fund (11104079, 10990101, 61127014, and 91021014), International Cooperation Projects from Ministry of Science and Technology (2010DFA04410), the Research Fund for the Doctoral Program of Higher Education of China (20110076120019), and the Program of Introducing Talents of Discipline to Universities (B12024).

References and links

1.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000). [CrossRef]

2.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]

3.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006). [CrossRef] [PubMed]

4.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]

5.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

6.

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009). [CrossRef] [PubMed]

7.

D. Solis Jr, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E. R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010). [CrossRef] [PubMed]

8.

W. H. Wang, Q. Yang, F. G. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011). [CrossRef] [PubMed]

9.

H. R. Raether, Surface Plasmon (Springer-Verlag, 1988).

10.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

11.

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett. 9(4), 1285–1289 (2009). [CrossRef] [PubMed]

12.

Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010). [CrossRef] [PubMed]

13.

B. Wild, L. Cao, Y. G. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6(1), 472–482 (2012). [CrossRef] [PubMed]

14.

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12(2), 661–665 (2012). [CrossRef] [PubMed]

15.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007). [CrossRef] [PubMed]

16.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009). [CrossRef] [PubMed]

17.

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010). [CrossRef] [PubMed]

18.

R. X. Yan, P. Pausauskie, J. X. Huang, and P. D. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009). [CrossRef] [PubMed]

19.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010). [CrossRef] [PubMed]

20.

Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009). [CrossRef] [PubMed]

21.

C. L. Du, Y. M. You, T. Chen, Y. Zhu, H. L. Hu, D. N. Shi, H. Y. Chen, and Z. X. Shen, “Individual Ag nanowire dimer for surface-enhanced Raman scattering,” Plasmonics 6(4), 761–766 (2011). [CrossRef]

22.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007). [CrossRef] [PubMed]

23.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009). [CrossRef] [PubMed]

24.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009). [CrossRef]

25.

J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express 19(21), 20991–21002 (2011). [CrossRef] [PubMed]

26.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

27.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006). [CrossRef] [PubMed]

28.

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91(17), 171117 (2007). [CrossRef]

29.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]

30.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Naowires electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006). [CrossRef]

31.

D. Ugarte, A. Chatelain, and W. A. de Heer,“Nanocapillarity and chemistry in carbon nanotubes,” Science 274(5294), 1897–1899 (1996). [CrossRef] [PubMed]

32.

E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature 391(6669), 775–778 (1998). [CrossRef] [PubMed]

33.

T. D. Lazzara, G. R. Bourret, R. B. Lennox, and T. G. M. van de Ven, “Polymer templated synthesis of AgCN and Ag nanowires,” Chem. Mater. 21(10), 2020–2026 (2009). [CrossRef]

34.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004). [CrossRef]

35.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett. 3(7), 955–960 (2003). [CrossRef]

36.

K. E. Korte, S. E. Skrabalak, and Y. N. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008). [CrossRef]

37.

C. Wang, Y. J. Hu, C. M. Lieber, and S. H. Sun, “Ultrathin Au nanowires and their transport properties,” J. Am. Chem. Soc. 130(28), 8902–8903 (2008). [CrossRef] [PubMed]

38.

F. Kim, K. Sohn, J. S. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008). [CrossRef] [PubMed]

39.

X. X. Li, L. Wang, and G. Q. Yan, “Review: recent research progress on preparation of silver nanowires by soft solution methods and their applications,” Cryst. Res. Technol. 46(5), 427–438 (2011). [CrossRef]

40.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001). [CrossRef] [PubMed]

41.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 26–30 (2008). [CrossRef]

42.

E. Wu, Y. Z. Chi, B. T. Wu, K. W. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. P. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructure,” J. Lumin. 131(9), 1971–1974 (2011). [CrossRef]

43.

H. M. Gong, Z. K. Zhou, S. Xiao, X. R. Su, and Q. Q. Wang, “Strong near-infrared avalanche photoluminescence from Ag nanowire arrays,” Plasmonics 3(2–3), 59–64 (2008). [CrossRef]

44.

R. Sarkar, P. Kumbhakar, A. K. Mitra, and R. A. Ganeev, “Synthesis and photoluminescence properties of silver nanowires,” Curr. Appl. Phys. 10(3), 853–857 (2010). [CrossRef]

45.

D. A. Clayton, D. M. Benoist, Y. Zhu, and S. L. Pan, “Photoluminescence and spectroelectrochemistry of single ag nanowires,” ACS Nano 4(4), 2363–2373 (2010). [CrossRef] [PubMed]

46.

J. J. Mock, S. J. Oldenburg, D. S. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002). [CrossRef]

47.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003). [CrossRef]

48.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007). [CrossRef] [PubMed]

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence
(260.5430) Physical optics : Polarization
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 25, 2012
Revised Manuscript: September 10, 2012
Manuscript Accepted: September 10, 2012
Published: September 14, 2012

Citation
Min Song, Gengxu Chen, Yan Liu, E Wu, Botao wu, and Heping Zeng, "Polarization properties of surface plasmon enhanced photoluminescence from a single Ag nanowire," Opt. Express 20, 22290-22297 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22290


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000). [CrossRef]
  2. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  3. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  6. Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009). [CrossRef] [PubMed]
  7. D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E. R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett.10(9), 3482–3485 (2010). [CrossRef] [PubMed]
  8. W. H. Wang, Q. Yang, F. G. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011). [CrossRef] [PubMed]
  9. H. R. Raether, Surface Plasmon (Springer-Verlag, 1988).
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  11. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett.9(4), 1285–1289 (2009). [CrossRef] [PubMed]
  12. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett.35(8), 1160–1162 (2010). [CrossRef] [PubMed]
  13. B. Wild, L. Cao, Y. G. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano6(1), 472–482 (2012). [CrossRef] [PubMed]
  14. P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett.12(2), 661–665 (2012). [CrossRef] [PubMed]
  15. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7(8), 2346–2350 (2007). [CrossRef] [PubMed]
  16. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  17. Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010). [CrossRef] [PubMed]
  18. R. X. Yan, P. Pausauskie, J. X. Huang, and P. D. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A.106(50), 21045–21050 (2009). [CrossRef] [PubMed]
  19. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett.10(5), 1950–1954 (2010). [CrossRef] [PubMed]
  20. Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett.9(5), 2049–2053 (2009). [CrossRef] [PubMed]
  21. C. L. Du, Y. M. You, T. Chen, Y. Zhu, H. L. Hu, D. N. Shi, H. Y. Chen, and Z. X. Shen, “Individual Ag nanowire dimer for surface-enhanced Raman scattering,” Plasmonics6(4), 761–766 (2011). [CrossRef]
  22. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007). [CrossRef] [PubMed]
  23. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009). [CrossRef] [PubMed]
  24. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nat. Phys.5(7), 470–474 (2009). [CrossRef]
  25. J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express19(21), 20991–21002 (2011). [CrossRef] [PubMed]
  26. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  27. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express14(1), 314–319 (2006). [CrossRef] [PubMed]
  28. J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett.91(17), 171117 (2007). [CrossRef]
  29. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3(5), 283–286 (2009). [CrossRef]
  30. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Naowires electronic and optoelectronic devices,” Mater. Today9(10), 18–27 (2006). [CrossRef]
  31. D. Ugarte, A. Chatelain, and W. A. de Heer,“Nanocapillarity and chemistry in carbon nanotubes,” Science274(5294), 1897–1899 (1996). [CrossRef] [PubMed]
  32. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature391(6669), 775–778 (1998). [CrossRef] [PubMed]
  33. T. D. Lazzara, G. R. Bourret, R. B. Lennox, and T. G. M. van de Ven, “Polymer templated synthesis of AgCN and Ag nanowires,” Chem. Mater.21(10), 2020–2026 (2009). [CrossRef]
  34. R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B108(43), 16713–16716 (2004). [CrossRef]
  35. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence,” Nano Lett.3(7), 955–960 (2003). [CrossRef]
  36. K. E. Korte, S. E. Skrabalak, and Y. N. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem.18(4), 437–441 (2008). [CrossRef]
  37. C. Wang, Y. J. Hu, C. M. Lieber, and S. H. Sun, “Ultrathin Au nanowires and their transport properties,” J. Am. Chem. Soc.130(28), 8902–8903 (2008). [CrossRef] [PubMed]
  38. F. Kim, K. Sohn, J. S. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc.130(44), 14442–14443 (2008). [CrossRef] [PubMed]
  39. X. X. Li, L. Wang, and G. Q. Yan, “Review: recent research progress on preparation of silver nanowires by soft solution methods and their applications,” Cryst. Res. Technol.46(5), 427–438 (2011). [CrossRef]
  40. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science291(5501), 103–106 (2001). [CrossRef] [PubMed]
  41. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. (Deerfield Beach Fla.)20(1), 26–30 (2008). [CrossRef]
  42. E. Wu, Y. Z. Chi, B. T. Wu, K. W. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. P. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructure,” J. Lumin.131(9), 1971–1974 (2011). [CrossRef]
  43. H. M. Gong, Z. K. Zhou, S. Xiao, X. R. Su, and Q. Q. Wang, “Strong near-infrared avalanche photoluminescence from Ag nanowire arrays,” Plasmonics3(2–3), 59–64 (2008). [CrossRef]
  44. R. Sarkar, P. Kumbhakar, A. K. Mitra, and R. A. Ganeev, “Synthesis and photoluminescence properties of silver nanowires,” Curr. Appl. Phys.10(3), 853–857 (2010). [CrossRef]
  45. D. A. Clayton, D. M. Benoist, Y. Zhu, and S. L. Pan, “Photoluminescence and spectroelectrochemistry of single ag nanowires,” ACS Nano4(4), 2363–2373 (2010). [CrossRef] [PubMed]
  46. J. J. Mock, S. J. Oldenburg, D. S. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett.2(5), 465–469 (2002). [CrossRef]
  47. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003). [CrossRef]
  48. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett.7(3), 723–728 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited