OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22475–22480
« Show journal navigation

Asymmetries in the momentum distributions of electrons stripped by a XUV chirped pulse in the presence of a laser field

G. Bonanno, S. Bivona, R. Burlon, and C. Leone  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22475-22480 (2012)
http://dx.doi.org/10.1364/OE.20.022475


View Full Text Article

Acrobat PDF (844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ionization of hydrogen by a chirped XUV pulse in the presence of a few cycle infrared laser pulse has been investigated. The electron momentum distribution has been obtained by treating the interaction of the atom with the XUV radiation at the first order of the time-dependent perturbation theory and describing the emitted electron through the Coulomb-Volkov wavefunction. The results of the calculations agree with the ones found by solving numerically the time-dependent Schrödinger equation. It has been found that depending on the delay between the pulses the combined effect of the XUV chirp and of the steering action on the infrared field brings about asymmetries in the electron momentum distribution. These asymmetries may give information on both the chirp and the XUV pulse duration.

© 2012 OSA

1. Introduction

The progress achieved in laser technology has made it possible to produce attosecond extreme ultraviolet (XUV) and soft X-ray pulses, that in the last years have become important tools for investigating the electronic dynamics of atoms and molecules occurring on the attosecond time scale [1

1. P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Progr. Phys. 67,, 813–855 (2004). [CrossRef]

, 2

2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-Cycle Nonlinear Optics,” Science 320, 1614–1617 (2008). [CrossRef] [PubMed]

]. The application of these sources requires the knowledge of their characteristics and in particular their duration. XUV pulse durations are currently measured by cross correlation techniques, based on photoionization of a target atom by the XUV pulse in the presence of the infrared (IR) pulse [3

3. A. Bouhal, R. Evans, G. Grillon, A. Mysyrowicz, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, and D. von der Linde, “Cross-correlation measurement of femtosecond noncollinear high-order harmonics,” J. Opt. Soc. Am. B 14, 950–956 (1997). [CrossRef]

, 4

4. E. S. Toma, H. G. Muller, P. M. Paul, P. Breger, M. Cheret, P. Agostini, C. LeBlanc, G. Mullot, and G. Cheriaux, “Ponderomotive streaking of the ionization potential as a method for measuring pulse durations in the XUV domain with fs resolution,” Phys. Rev. A 62, 061801(R) (2000). [CrossRef]

]. For XUV pulse encompassing several infrared radiation periods, the cross correlation exploits the appearance of sidebands in photoelectron energy spectrum or the ponderomotive shift of these peaks. These methods cannot be directly extended for measuring attosecond XUV pulse durations, as the energy resolution is limited by the uncertainty relation ΔEΔt > h̄. In fact, the sidebands disappear and, consequently, the ponderomotive shift is not longer observable, when the XUV duration is shorter than the period of the infrared radiation field. Different cross correlation methods have been proposed to measure attosecond pulse duration [5

5. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature , 414, 509 (2001). [CrossRef] [PubMed]

7

7. J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002). [CrossRef] [PubMed]

]. In Ref. [5

5. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature , 414, 509 (2001). [CrossRef] [PubMed]

] the attosecond XUV duration has been determined by using a classical model that relates the XUV duration to the shift and the broadening of the energy spectrum of the emitted electrons, whose motion has been described classically. The validity range of this classical method was investigated in ref. [6

6. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, “Quantum Theory of Attosecond XUV Pulse Measurement by Laser Dressed Photoionization,” Phys. Rev. Lett. 88, 173904 (2002). [CrossRef] [PubMed]

] by using a quantum mechanical analysis, in the framework of the strong field approximation. Based on the possibility of resolving the emitted electron signal in energy and angle, Itatani et al. [7

7. J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002). [CrossRef] [PubMed]

] derived a method founded on the streak camera principle for determining the duration of attosecond pulses. The duration of the XUV pulse is determined by measuring the width of the photoelectron energy spectrum at a given observation angle, when the laser field is linearly polarized, and by the angular spread of the photoelectron moving with a given energy on the plane perpendicular to the propagation direction of the collinear pulses, when the IR radiation is circularly polarized. We remark that the streak camera principle was also used for retrieving the electric field of a linearly polarized laser pulse [8

8. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004). [CrossRef] [PubMed]

]. In this experiment the XUV pulse was approximately ten times shorter than the optical period, so that it was possible to correlate the recorded electron energy to the laser field vector potential at the time of ionization. By varying the delay time of the XUV pulse with respect to the laser pulse and analyzing the recorded electron spectra, the electric field of the laser pulse could be reconstructed. A method providing the complete evolution of the streaking electric field as well as the complex amplitude of the XUV pulse (FROG-CRAB) was proposed by Mairesse and Quéré [9

9. Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005). [CrossRef]

]. It consists in generating an electron wave packet in the continuum by photoionizing atoms with the attosecond XUV pulse (including train of pulses), and in using a low frequency dressing laser field (including multi cycle fields) as a phase gate for FROG-like measurements on this wavepacket [2

2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-Cycle Nonlinear Optics,” Science 320, 1614–1617 (2008). [CrossRef] [PubMed]

, 10

10. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]

]. It is the aim of the present work to analyze and discuss the properties of the momentum distribution of the electron emitted from the ground state of the H atom by a relatively weak single attosecond XUV pulse in the presence of an IR laser pulse under particular conditions that will be specified below. We note that the effect of an additional IR laser pulse on the momentum distributions of photoelectrons produced by a few-cycle attosecond XUV pulse with well-defined carrier envelope phase has been addressed in ref. [11

11. L.-Y. Peng, E. A. Pronin, and A. Starace, “Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse,” New J. Phys. 10, 025030 (2008). [CrossRef]

]. Here our focus is on the effect produced by a linearly chirped attosecond XUV pulse on the photoelectron spectra. In fact, it will be shown that a chirped attosecond pulse in the presence of IR laser pulse may bring about asymmetries in the photoelectron momentum distributions that can be used for measuring both pulse duration and chirp.

2. Theory

The case study is the hydrogen atom ionization by the simultaneous action of a XUV pulse and an IR radiation. An approximate analytical form of the differential ionization probability giving the electron momentum distribution (EMD) produced by the XUV ionization in the presence of the IR radiation may be derived by treating the interaction of the atom with the XUV pulse at the first order of the time-dependent perturbation theory and describing the freed electron by the Coulomb-Volkov wavefunction that is assumed, though approximately, to account for the electron interaction with both the Coulomb and the IR fields [12

12. D.B. Milošević and F. Ehlotzky, “Coulomb and rescattering effects in above-threshold ionization,” Phys. Rev. A 58, 3124–3127 (1998); [CrossRef]

, 13

13. G. L. Yudin, S. Patchkovskii, and A. D. Bandrauk, “Chirp-dependent attosecond interference in the Coulomb-Volkov continuum,” J. Phys B: At. Mol Opt. Phys 41, 045602 (2008). [CrossRef]

]. With the above approximation,by taking both the pulses linearly polarized along the z-axis and in dipole approximation, the differential transition probability from the atomic ground state to a continuum state characterized by the electron canonical momentum q ≡ (qx, qy, qz) may be written, in atomic units, as
P(qx,qy,qz)=|dtu^zdq(t)EH(t)exp{itτL/2[12[q(t)]2IP]dt}|2
(1)
Where q(t) = q+AL(t)/c is the instantaneous mechanical momentum, AL(t) the vector potential associated to the IR pulse, ûz a unit vector directed along the z-axis, EH(t) the XUV electric field, dq(t) the field free dipole transition matrix element between the atomic ground state and the state describing the photoelectron emitted with mechanical momentum q(t), Ip = −0.5 a.u. the ground state energy and τL the total IR pulse duration. We remark that Eq. (1) does not account for the channel pertaining to the ionization due to the infrared action through the above threshold ionization (ATI). Therefore, the validity of P(q) is confined to photoelectron energy ranges well separated from the energies characterizing the photoelectrons generated by ATI. In our calculations an attosecond, linearly chirped Gaussian, XUV pulse will be assumed with the electric field given by
EH(t)=E0Hexp{4ln2(1+β2)τH2(ttH)2}cos(ωH(ttH)+δ(t))
(2)
where δ(t)=(4ln2)[β(ttH)2/(1+β2)τH2]. E0H is the field amplitude, tH the instant at which the pulse reaches its maximum, τH the pulse duration, taken as full width at half maximum (FWHM), for the transform-limited pulse, and ωH the central photon energy at t = tH. β stands for the dimensionless linear chirp rate: positive (negative) chirp corresponds to the instantaneous frequency increasing (decreasing) with time. The duration (FWHM) of the chirped pulse is τCH=τH1+β2. The IR laser electric field, with frequency ωL and field amplitude E0L, is taken as
EL(t)=EL(t)u^z=E0Lf(t)cos(ωLt)u^z
(3)
In Eq. (3) f(t) = cos2πt/τL for −τL/2 ≤ tτL/2 and zero elsewhere. In order to have an integer number of cycles we assume τL = nLTL, with TL = 2π/ωL the period of the carrier. The time lag between the maxima of the two pulses is given by tH. The vector potential associated to IR pulse, taken in Gaussian units as AL(t)=cτL/2tdtEL(t), turns out to be zero for t ≤ −τL/2 and tτL/2. We note that for t > τL/2, AL(t) = 0 and q(t) = q.

Owing to the cylindrical symmetry with respect to the z-axis, the differential transition probability P(qx, qy, qz) will be shown in the (qx, qz) plane, having put qy = 0 without loss of generality.

3. Results and discussion

Figure 1(a) shows the momentum distribution of electrons stripped from the ground state of hydrogen atoms by a linearly chirped Gaussian XUV pulse (τH = 150 asec FWHM, β=3) with the central photon energy ωH = 90 eV and peak intensity IH = 1011W/cm2 in the presence of a 6 cycle IR pulse with wavelength 750 nm and peak intensity IL = 2·1013 W/cm2. The center of the attosecond pulse is assumed to be positioned at the peak of the laser field (tH = 0). The results of Fig. 1(a) show the breakdown of the photoelectron momentum distribution invariance under the reflection through the plane qz = 0. This invariance is commonly observed when the atomic ionization is caused by a sole very long XUV pulse. In particular, for the electron emitted along the z-direction (qx = 0), the two peaks centered at about the kinetic momenta qz=±2(ωX+Ip) turn out to be quite different in that the peak located at qz > 0 is lower and broader than the other one centered at qz < 0. Calculations here not reported show that the peaks positions invert when β changes sign, i.e. the photoelectron momentum distributions are invariant under both the transformations qz → −qz and β → −β. Moreover, it may be shown that by keeping fixed ωL, ωH and τH, P(qx, qy, qz) results to be very sensitive to the variations of both the linear chirp and the IR pulse intensity IL.

Fig. 1 Momentum distribution P(qx, 0, qz) of photoelectrons emitted from H atom ionized by a single XUV pulse having τH = 150 asec FWHM, β=3, central photon energy ωH = 90 eV and peak intensity IH = 1011 W / cm2, in the presence of a 6-cycle IR pulse with wavelength 750 nm and peak intensity IL = 2 · 1013 W/cm2. The peak of the XUV pulse is centered at (a) tH = 0 and (b) tH = TL/4, TL being the IR pulse period.

Figure 1(b) shows the electron momentum distribution evaluated by choosing the same parameters as those of Fig. 1(a), but with the delay time tH = TL/4. In this case the main effect of the presence of IR pulse is the shifting of the EMD, in the momentum space, by Δqz = −AL(tH)/c, where AL(tH) is the value of the vector potential of the IR pulse at the instant of birth of the electron assumed to occur at the peak of the XUV pulse. This shift has been experimentally observed in the ionization of electrons ejected from the 4p state of krypton atoms under simultaneous irradiation of a 90 eV transform limited X-ray pulse and a femtosecond IR pulse (λ = 750 nm) [6

6. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, “Quantum Theory of Attosecond XUV Pulse Measurement by Laser Dressed Photoionization,” Phys. Rev. Lett. 88, 173904 (2002). [CrossRef] [PubMed]

]. We remark that the results reported in Fig. 1(b) show that the asymmetries in the two peaks for electron ejection along z-axis, found for tH = 0, become vanishingly small for tH = TL/4. The main features of the EMD shown in the Fig. 1 may be conveniently illustrated by considering that, for a sufficiently short XUV pulse (τCH < TL/4), Eq. (1) may be evaluated by expanding the integrand in power series of (ttH) and by keeping, in the exponent in curly brackets, terms up to the second order in (ttH). Then, the differential transition probability, taking the XUV radiation in the rotating wave approximation, assumes the simple form
P(qx,qy,qz)=|dq(tH)E0H/2|2Π(β,τH)
(4)
where
=1i[(q+AL(tH))2/2ωHIP]2a+ibEL(tH)q(u^zdq(tH))u^zdq(tH)
(5)
Π(β,τH)=πexp{a[(q+AL(tH))2/2ωHIP]22(a2+b2)}a2+b2
(6)
b=[q+AL(tH)]EL(tH)/2+βa
(7)
with a=4ln2/τCH2. Equation (4) applies for all observation directions. In order to asses the validity of Eq. (1), the electron momentum distributions obtained by this equation have been compared with the ones found by solving numerically the time-dependent Schrödinger equation (TDSE) by using the split operator approach followed in QPROP program [14

14. D. Bauer and P. Koval, “Qprop: A Schrödinger-solver for intense laser-atom interaction,” Comp. Phys Commun. 174, 396–421 (2006). [CrossRef]

] (additional details may be found in ref. [15

15. S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Radiation controlled energy of photoelectrons produced by two-color short pulses,” Eur. Phys. J ST 160, 23–31 (2008).

]). The comparison, for the particular case of electron ejection along the z-axis, is shown in Fig. 2 together with the EMD obtained by Eq. (4). The predictions of Eq. (1) are in very good agreement with the numerical ones.

Fig. 2 Differential ionization probability P(0, 0, qz) for electron ejection along the z-axis as a function of qz. IR and XUV pulses parameters as in Fig. 1a. The continuous green curve is obtained by integration of the TSDE, the red dashed curve by Eq. 1, the black dotted curve by Eq. 4

Equation (4) allows us to discuss the main features of the EMD evaluated at tH = 0 and tH = TL/4, already shown in Fig. 1. More generally, from Eq. (4), it turns out that the peaks of the photoelectron momentum distributions, for given values of qx, are located about at qz=A(tH)/c±qx2+2(ωX+IP) and that the breadth of the latter depends on the sign of qz. For β > 0 and fixed value of qx, the momentum distribution of the electron ejected with ûzqz parallel to EL(tH) are found to be broader than the ones pertaining to electron emission with ûzqz opposite to EL(tH), as already shown in Fig. 1(a) for the particular case tH = 0. These asymmetries originate from the combined effect of the XUV chirp and of the steering action of the laser pulse on the freed electron. They tend to disappear for electron ejection along the direction perpendicular to the laser electric field, or, as shown in Fig. 1(b), when the time delay is tH = TL/4, as the steering effect extinguishes being EL(TL/4) = 0. Moreover, we note that the EMD are invariant under the simultaneous transformations q →q + 2AL(t)/c and β → −β. From the above considerations it follows that the XUV chirp influence on the EMD characterized by opposite qz becomes more effective when tH = 0. This circumstance may be exploited to get information on both the chirp and XUV pulse duration. In fact, for electron emission along the z-direction and for time delay tH = 0, Eq. (4) predicts that the height of the peaks of the EMD for forward emission decreases monotonically by increasing IL, while for backward electron emission the height of the peaks first increases by increasing IL and, after reaching its maximum, decreases monotonically. In Fig. 3 the peaks height for, respectively, forward and backward electron emission, evaluated for two different values of β by means of Eq. (4), is shown as a function of IL and compared with the results obtained by using Eq. (1) and with the ones found by performing the numerical integration of the TDSE. We note that (see Eq. (4)) for β > 0 (β < 0) the highest peak in the EMD occurs for backward (forward) electron emission. These results suggest a way for determining the value of β and τCH. These parameters may be obtained by simultaneously detecting, as a function of IL, the momentum distribution of the electrons emitted, respectively, in the forward and backward directions. This task can be accomplished by using the same stereodetector arrangement as the one used in Ref. [16

16. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001). [CrossRef] [PubMed]

] for recording electrons emitted in opposite directions. By remembering that AL(tH) = 0 when tH = 0, the highest peaks in EMD, by assuming β > 0, occurs when b given by Eq. (7) is zero, i.e. for such laser field strength Ē0L that Ē0Lq̄ = −2βa with q¯=2(ωX+IP). By denoting by R the ratio between the values of the peaks of the EMD recorded respectively in the backward and forward direction at the field strength Ē0L, it is easily found that β=R214 and τCH=8βln2q¯E¯0L.

Fig. 3 Maximum of the transition probability P(0, 0, qz), as a function of the IR pulse peak intensity IL, obtained with (a) β=3 and (b) β = 1.5, the other parameters being the same as in Fig. (1)a. Circle Eq. 1, triangle Eq. 4, square TDSE. In each panel top curves refer to the backward (qz < 0) peak, while bottom curves refer to forward (qz > 0) peak.

Before concluding, we observe that the results here reported on, found for hydrogen, may be extended to any atomic system. According to Eq. (4), the features of electron momentum distribution are given by Π(β, τH) · ℱ, that is independent of the atomic system taken under consideration, the characteristics of the atom being incorporated into the dipole transition matrix element evaluated at the instantaneous mechanical electron momentum q(tH).

This work is supported in part by the Italian Ministry of University and Scientific Research.

References and links

1.

P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Progr. Phys. 67,, 813–855 (2004). [CrossRef]

2.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-Cycle Nonlinear Optics,” Science 320, 1614–1617 (2008). [CrossRef] [PubMed]

3.

A. Bouhal, R. Evans, G. Grillon, A. Mysyrowicz, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, and D. von der Linde, “Cross-correlation measurement of femtosecond noncollinear high-order harmonics,” J. Opt. Soc. Am. B 14, 950–956 (1997). [CrossRef]

4.

E. S. Toma, H. G. Muller, P. M. Paul, P. Breger, M. Cheret, P. Agostini, C. LeBlanc, G. Mullot, and G. Cheriaux, “Ponderomotive streaking of the ionization potential as a method for measuring pulse durations in the XUV domain with fs resolution,” Phys. Rev. A 62, 061801(R) (2000). [CrossRef]

5.

M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature , 414, 509 (2001). [CrossRef] [PubMed]

6.

M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, “Quantum Theory of Attosecond XUV Pulse Measurement by Laser Dressed Photoionization,” Phys. Rev. Lett. 88, 173904 (2002). [CrossRef] [PubMed]

7.

J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002). [CrossRef] [PubMed]

8.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267–1269 (2004). [CrossRef] [PubMed]

9.

Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A 71, 011401 (2005). [CrossRef]

10.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]

11.

L.-Y. Peng, E. A. Pronin, and A. Starace, “Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse,” New J. Phys. 10, 025030 (2008). [CrossRef]

12.

D.B. Milošević and F. Ehlotzky, “Coulomb and rescattering effects in above-threshold ionization,” Phys. Rev. A 58, 3124–3127 (1998); [CrossRef]

13.

G. L. Yudin, S. Patchkovskii, and A. D. Bandrauk, “Chirp-dependent attosecond interference in the Coulomb-Volkov continuum,” J. Phys B: At. Mol Opt. Phys 41, 045602 (2008). [CrossRef]

14.

D. Bauer and P. Koval, “Qprop: A Schrödinger-solver for intense laser-atom interaction,” Comp. Phys Commun. 174, 396–421 (2006). [CrossRef]

15.

S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Radiation controlled energy of photoelectrons produced by two-color short pulses,” Eur. Phys. J ST 160, 23–31 (2008).

16.

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001). [CrossRef] [PubMed]

OCIS Codes
(270.6620) Quantum optics : Strong-field processes
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 26, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 6, 2012
Published: September 17, 2012

Citation
G. Bonanno, S. Bivona, R. Burlon, and C. Leone, "Asymmetries in the momentum distributions of electrons stripped by a XUV chirped pulse in the presence of a laser field," Opt. Express 20, 22475-22480 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Agostini and L. F. DiMauro, “The physics of attosecond light pulses,” Rep. Progr. Phys.67,, 813–855 (2004). [CrossRef]
  2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-Cycle Nonlinear Optics,” Science320, 1614–1617 (2008). [CrossRef] [PubMed]
  3. A. Bouhal, R. Evans, G. Grillon, A. Mysyrowicz, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, and D. von der Linde, “Cross-correlation measurement of femtosecond noncollinear high-order harmonics,” J. Opt. Soc. Am. B14, 950–956 (1997). [CrossRef]
  4. E. S. Toma, H. G. Muller, P. M. Paul, P. Breger, M. Cheret, P. Agostini, C. LeBlanc, G. Mullot, and G. Cheriaux, “Ponderomotive streaking of the ionization potential as a method for measuring pulse durations in the XUV domain with fs resolution,” Phys. Rev. A62, 061801(R) (2000). [CrossRef]
  5. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature, 414, 509 (2001). [CrossRef] [PubMed]
  6. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec, “Quantum Theory of Attosecond XUV Pulse Measurement by Laser Dressed Photoionization,” Phys. Rev. Lett.88, 173904 (2002). [CrossRef] [PubMed]
  7. J. Itatani, F. Quéré, G. L. Yudin, M. Yu. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett.88, 173903 (2002). [CrossRef] [PubMed]
  8. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305, 1267–1269 (2004). [CrossRef] [PubMed]
  9. Y. Mairesse and F. Quéré, “Frequency-resolved optical gating for complete reconstruction of attosecond bursts,” Phys. Rev. A71, 011401 (2005). [CrossRef]
  10. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009). [CrossRef]
  11. L.-Y. Peng, E. A. Pronin, and A. Starace, “Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse,” New J. Phys.10, 025030 (2008). [CrossRef]
  12. D.B. Milošević and F. Ehlotzky, “Coulomb and rescattering effects in above-threshold ionization,” Phys. Rev. A58, 3124–3127 (1998); [CrossRef]
  13. G. L. Yudin, S. Patchkovskii, and A. D. Bandrauk, “Chirp-dependent attosecond interference in the Coulomb-Volkov continuum,” J. Phys B: At. Mol Opt. Phys41, 045602 (2008). [CrossRef]
  14. D. Bauer and P. Koval, “Qprop: A Schrödinger-solver for intense laser-atom interaction,” Comp. Phys Commun.174, 396–421 (2006). [CrossRef]
  15. S. Bivona, G. Bonanno, R. Burlon, and C. Leone, “Radiation controlled energy of photoelectrons produced by two-color short pulses,” Eur. Phys. J ST160, 23–31 (2008).
  16. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature414, 182–184 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited