OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22609–22615
« Show journal navigation

Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22609-22615 (2012)
http://dx.doi.org/10.1364/OE.20.022609


View Full Text Article

Acrobat PDF (1542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re(γ) = 1200W−1m−1. We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e. ~2GW/cm2) over timescales of at least an hour.

© 2012 OSA

1. Introduction

Single crystal silicon-on insulator (SOI), compatible with computer chip technology (CMOS), has attracted huge interest over the past 10 years as a platform for nonlinear nanophotonic devices for all-optical signal processing [1

1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]

], primarily because of its ability to achieve extremely high nonlinearities (Re(γ) = ω n2 / c Aeff, where Aeff is the waveguide effective area) exceeding 300W−1 m−1 [2

2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]

]. All-optical signal processing at bit rates of 160Gb/s [3

3. F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010). [CrossRef] [PubMed]

] to over 1Tb/s [4

4. H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010). [CrossRef]

], third harmonic generation [5

5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]

] ultra-fast optical monitoring [6

6. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010). [CrossRef] [PubMed]

] and efficient correlated photon pair generation [7

7. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011). [CrossRef] [PubMed]

] have now been achieved. However, significant two-photon absorption (TPA) of crystalline silicon (c-Si) at telecom wavelengths is such that its nonlinear figure of merit (FOM = n2 / βTPAλ, where βTPA is the TPA coefficient and n2 is the Kerr nonlinearity) is in the range of FOM = 0.3 to 0.5 [1

1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]

] – much less than ideal for nonlinear optical applications. This has significantly limited the efficiency of these nonlinear devices - the largest parametric gain achieved in the telecom band in c-Si, for example, is only about 2dB [2

2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]

]. The critical impact of the low FOM of c-Si was dramatically illustrated in recent experiments [8

8. S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]

12

12. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011). [CrossRef] [PubMed]

] using mid-infrared [13

13. R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]

, 14

14. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010). [CrossRef]

] optical pumps at wavelengths above the TPA threshold wavelength of 2.2µm where c-Si’s FOM is much higher (up to ~4 [9

9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010). [CrossRef]

]). This resulted for instance, in extremely high parametric gain over 50dB [10

10. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood Jr, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011). [CrossRef] [PubMed]

], super continuum generation [11

11. B. Kuyken, X. Liu, R. M. Osgood Jr, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011). [CrossRef] [PubMed]

], and high cw FWM conversion efficiency [12

12. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011). [CrossRef] [PubMed]

] in Si wires. However, the low FOM of c-Si in the telecom band is a fundamental material property that cannot be improved.

It was recently suggested [15

15. K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007). [CrossRef] [PubMed]

] that amorphous silicon could represent a promising alternative to crystalline silicon due to its expected lower nonlinear absorption resulting from the larger electronic bandgap of amorphous silicon compared to c-Si [16

16. S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997). [CrossRef]

]. Although initial nonlinear measurements in amorphous silicon devices yielded a FOM no better than c-Si (~0.5) [17

17. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010). [CrossRef] [PubMed]

, 18

18. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010). [CrossRef] [PubMed]

], recent demonstrations have confirmed the possibility of increasing the FOM from around 1 [19

19. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37(8), 1382–1384 (2012). [CrossRef] [PubMed]

, 20

20. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012). [CrossRef] [PubMed]

] to as high as 2 at telecommunication wavelengths [21

21. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011). [CrossRef] [PubMed]

, 22

22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

], allowing very high parametric gains of over + 26dB over the C-band [21

21. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011). [CrossRef] [PubMed]

] to be achieved. However, to date a key drawback for this material has been a lack of stability, resulting in a dramatic degradation in performance over relatively short timescales (on the order of a few tens of minutes) [22

22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

]. Unless this problem can be solved, despite its very promising nonlinear performance, amorphous silicon could well be in danger of becoming an academic curiosity.

In this paper, we demonstrate amorphous silicon nanowires combining high nonlinear FOM, high nonlinearity and good material stability at telecom wavelengths. We observe no degradation in the nonlinear characteristics at comparable power levels, and over longer timescales than those studied in [22

22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

]. We experimentally measure self-phase modulation and nonlinear transmission, fit to standard theory, in order to estimate both a high nonlinear FOM and nonlinear Re(γ) factor.

2. Experiment

The hydrogenated amorphous silicon nanowires (a-Si:H) waveguides were fabricated in a 200mm CMOS pilot line at CEA-LETI, France. The a-Si:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 350°C on 1.7µm oxide deposited on a bulk wafer. After deposition of a silica hard mask, two steps of 193nm DUV lithography and HBr silicon etching were used to define grating couplers that were well aligned with serpentine waveguides with varying lengths (1.22 cm to 11 cm). The fabricated waveguides are ~220nm in thickness and ~500nm in width. The cross-section is shown in Fig. 1
Fig. 1 (a) Experimental setup for observing SPM in a-Si:H waveguide. (b) SEM cross-section of the a-Si:H nanophotonic wire embedded in silica.
. A 500nm oxide was deposited to provide an upper cladding. The group velocity dispersion for the TE mode confined within a 500nm × 220nm nanowire was calculated with FEMSIM, yielding an anomalous second-order dispersion parameter β2 = −4.2 × 10−25 s2/m at λ = 1550nm.

Figure 1 shows a schematic of the experimental setup used for the measurement of both the linear and nonlinear propagation characteristics of our a-Si:H nanowires. A mode-locked fiber laser with near transform limited ~1.8ps long pulses at a repetition rate of 20MHz at 1550nm was coupled into the TE mode of our a-Si:H nanowires via in-plane gratings. The fiber to waveguide coupling loss per coupler was ~10.6dB and 12.4dB per entry and exit, respectively, which was higher than expected due to the grating couplers not being optimized. The propagation loss of the TE mode was measured to be ~4.5 dB/cm, via a cut-back method on serpentine waveguides with lengths varying from 1.22 cm to 11 cm. A comparison with linear measurements performed on 1.3mm long straight nanowires yielded a loss contribution due to the bends (10 μm radius) of about 4dB, i.e. on the order of 0.04dB/ bend.

To determine the nonlinear parameters of our waveguides, we performed a series of self- phase modulation (SPM) measurements in a 1.22 cm long nanowire, with a coupled peak power up to ~3W. The output spectrum was then measured as a function of input power.

3. Results and discussion

Split-step-Fourier method simulations were then performed to solve the nonlinear Schrödinger equation governing the propagation of the picosecond optical pulse in the nonlinear waveguide, in the presence of second-order dispersion β2 and TPA. The impact of dispersion was negligible, as expected for a β2 = −4.2 × 10−25s2/m, associated with a dispersion length exceeding 7m for the 1.8ps pulses, i.e. well over the physical length of the waveguide. Figures 2(b) and 3(b) show the output spectra resulting from these numerical simulations, showing a good agreement with the measurements, when taking the TPA contribution stated above and a nonlinear waveguide parameter Re(γ) = 1200/W/m, associated with a refractive index n2 = 2.1 x 10−17 m2/W ± 5%. The good agreement is highlighted in Fig. 5
Fig. 5 Nonlinear phase shift versus coupled peak power extracted from experiment (stars) and simulations (red line).
, by directly comparing the nonlinear phase-shift as a function of coupled power for both experiment and simulations. Note that the low TPA of a-Si:H is also reflected in the absence of any blue shift in the output spectra. The latter is a signature of free carriers generated by TPA over the pulse duration and is generally observed in c-Si waveguides for near-infrared picosecond pulses exhibiting similarly high nonlinear phase shifts [24

24. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004). [CrossRef] [PubMed]

26

26. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood Jr, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19(8), 7778–7789 (2011). [CrossRef] [PubMed]

]. Although we did not observe any signature at all of free carriers in our material, we note that in principle free carriers can be important and this critically depends on the material system used. For instance all-optical modulation based on free carrier absorption [27

27. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010). [CrossRef] [PubMed]

] in a-Si:H waveguides has been demonstrated and free carrier lifetimes of ~ps have been measured in [19

19. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37(8), 1382–1384 (2012). [CrossRef] [PubMed]

].

Most importantly, however, as mentioned a-Si:H has exhibited fundamental instability of its nonlinear characteristics when subjected to optical signals in the telecom band [22

22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

]. In experiments with similar pulsed laser characteristics to ours, a significant degradation in the modulation instability sidebands was observed after only a few minutes [22

22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

]. Even though this could be reversed under annealing, the post-annealed material still exhibited the same instability [22

22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

]. Figure 6
Fig. 6 Output spectra as a function time for a coupled peak power of 1.5W. The spectra are recorded every 2min over 1 hour.
shows the spectra out of our 1.22cm long waveguide recorded every two minutes when pumped with 2.25W of coupled peak power, corresponding to ~3GW/cm2, over a timescale of 1hr. The spectra show negligible degradation in the SPM spectral pattern. Figures 7(a)
Fig. 7 (a) Normalized power and (b) RMS spectral broadening of the output pulse measured under 2.25W coupled peak power launched over one hour duration.
and 7(b) display the associated power and RMS spectral broadening of the output pulse as a function of time. Both show random fluctuations of a few percent over the course of the exposure, which were more likely due to variations in the coupling rather than any clear trend associated with material changes induced by the exposure. Further, we observed no degradation in the parameters over the entire course of our experiments, which at times were conducted at peak powers of up to 3W (~4GW/ cm2), primarily limited by the coupler insertion loss. We note that our material has also exhibited stable operation in the context of a hybrid integrated laser [28

28. C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012). [CrossRef]

].

Finally, a-Si:H is deposited at low temperature and is compatible with standard CMOS technology. a-Si:H based photonics can be considered as an alternative technology to SOI for integrating photonic functions on CMOS [29

29. R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006). [CrossRef]

33

33. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008). [CrossRef]

]. Our results raise the prospect for a-Si:H to provide a truly practical and viable, high performance, platform for nonlinear photonic applications in the telecommunications wavelength window.

4. Conclusion

We demonstrate a-Si:H nanowires with both high nonlinearity of Re(γ) = 1200 W−1m−1 and nonlinear FOM of ~5. We observe no degradation in these parameters under systematic studies at 2.2W coupled peak power over timescales up to an hour, nor did we observe any degradation in the nonlinear parameters over the entire course of our experiments, at times up to 3W coupled peak power. These results represent the first report of simultaneously high FOM, nonlinearity and stability under ~watts coupled peak power operation in a-Si:H and as such potentially pave the way for a-Si:H to offer a viable high performance nonlinear platform for all-optical devices in CMOS compatible integrated nanophotonic circuits, operating in the telecommunications window.

Acknowledgments

We acknowledge financial support of the European Union through the Marie Curie program (ALLOPTICS) and the Australian Research Council (ARC).

References and links

1.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]

2.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]

3.

F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010). [CrossRef] [PubMed]

4.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010). [CrossRef]

5.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]

6.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010). [CrossRef] [PubMed]

7.

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011). [CrossRef] [PubMed]

8.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]

9.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010). [CrossRef]

10.

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood Jr, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011). [CrossRef] [PubMed]

11.

B. Kuyken, X. Liu, R. M. Osgood Jr, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011). [CrossRef] [PubMed]

12.

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011). [CrossRef] [PubMed]

13.

R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]

14.

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010). [CrossRef]

15.

K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007). [CrossRef] [PubMed]

16.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997). [CrossRef]

17.

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010). [CrossRef] [PubMed]

18.

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010). [CrossRef] [PubMed]

19.

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37(8), 1382–1384 (2012). [CrossRef] [PubMed]

20.

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012). [CrossRef] [PubMed]

21.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011). [CrossRef] [PubMed]

22.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef] [PubMed]

23.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991). [CrossRef]

24.

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004). [CrossRef] [PubMed]

25.

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood Jr., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006). [CrossRef] [PubMed]

26.

X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood Jr, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19(8), 7778–7789 (2011). [CrossRef] [PubMed]

27.

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010). [CrossRef] [PubMed]

28.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012). [CrossRef]

29.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006). [CrossRef]

30.

K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power 160-Gb/s all-optical demultiplexing in hydrogenated amorphous silicon waveguides,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online), paper IW4C.3 (2012).

31.

J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of 3rd IEEE International Conf. on Group IV Photonics (2006), pp. 200–202.

32.

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006). [CrossRef]

33.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008). [CrossRef]

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3130) Integrated optics : Integrated optics materials
(130.4310) Integrated optics : Nonlinear

ToC Category:
Integrated Optics

History
Original Manuscript: August 31, 2012
Manuscript Accepted: September 7, 2012
Published: September 18, 2012

Citation
C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, "Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability," Opt. Express 20, 22609-22615 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  3. F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express18(4), 3905–3910 (2010). [CrossRef] [PubMed]
  4. H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett.22(23), 1762–1764 (2010). [CrossRef]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics3(4), 206–210 (2009). [CrossRef]
  6. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18(8), 7770–7781 (2010). [CrossRef] [PubMed]
  7. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett.36(17), 3413–3415 (2011). [CrossRef] [PubMed]
  8. S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  10. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011). [CrossRef] [PubMed]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  12. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  13. R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  14. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics4(8), 506–508 (2010). [CrossRef]
  15. K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express15(26), 17761–17771 (2007). [CrossRef] [PubMed]
  16. S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys.82(7), 3334–3340 (1997). [CrossRef]
  17. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010). [CrossRef] [PubMed]
  18. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010). [CrossRef] [PubMed]
  19. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett.37(8), 1382–1384 (2012). [CrossRef] [PubMed]
  20. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  21. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011). [CrossRef] [PubMed]
  22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011). [CrossRef] [PubMed]
  23. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys.70(7), 3992–3994 (1991). [CrossRef]
  24. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express12(5), 829–834 (2004). [CrossRef] [PubMed]
  25. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express14(12), 5524–5534 (2006). [CrossRef] [PubMed]
  26. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011). [CrossRef] [PubMed]
  27. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  28. C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012). [CrossRef]
  29. R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE6183, 618304, 618304-10 (2006). [CrossRef]
  30. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power 160-Gb/s all-optical demultiplexing in hydrogenated amorphous silicon waveguides,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online), paper IW4C.3 (2012).
  31. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of 3rd IEEE International Conf. on Group IV Photonics (2006), pp. 200–202.
  32. J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE6125, 61250H, 61250H-15 (2006). [CrossRef]
  33. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol.2008, 412518 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited