OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23518–23526
« Show journal navigation

Ultra-stable long distance optical frequency distribution using the Internet fiber network

Olivier Lopez, Adil Haboucha, Bruno Chanteau, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23518-23526 (2012)
http://dx.doi.org/10.1364/OE.20.023518


View Full Text Article

Acrobat PDF (1603 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10−15 at one second measurement time and 2 × 10−19 at 30 000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.

© 2012 OSA

1. Introduction

Frequency metrology has developed considerably over the past ten years and has benefited from scientific advances in the areas of atom laser cooling and frequency comparison with femtosecond laser combs. Today cold atoms microwave frequency standards reach routinely a fractional accuracy in the low 10−16 in several laboratories [1

1. R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia 48(5), 283–289 (2011). [CrossRef]

4

4. N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett. 98(7), 070802 (2007). [CrossRef] [PubMed]

]. Trapped ion or neutral lattice optical clocks have already demonstrated accuracy of parts in the 1017 or better [5

5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010). [CrossRef] [PubMed]

9

9. J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett. 108(15), 153002 (2012). [CrossRef] [PubMed]

]. This outstanding performance makes them ideal tools for fundamental physics tests of the validity of general relativity on earth and in space. Among them, the comparison of different types of clocks is used to detect possible variations in time of universal constants of physics. More generally, accurate time and frequency transfer is essential for geodesy, high resolution radio-astronomy (Very Long Baseline Interferometry, VLBI), and for the underpinning of the accuracy of almost every type of precision measurement.

2. Long haul ultra-stable optical links on Internet fiber network

The digital stream between Université Paris 13 and Aubervilliers is encoded over an optical carrier on channel #34 (1550.12 nm) whereas the ultrastable signal is carried by the channel #44, at 1542.14 nm. The second span is composed of two 36 km-long urban dark fibers which connect the two DCFs of Interxion 1 and TeleHouse 2, downtown Paris. The third, fourth and fifth spans are composed of two 103 km, 85 km, and 35 km long-haul intercity fibers simultaneously carrying internet data traffic encoded on optical carriers propagating on two channels, the #42 and #43.

3. The remote laser station

As local optical oscillator we implement a low noise planar waveguide laser diode of linewidth below 5 kHz. Its frequency can be tuned over a range of about 2 GHz, which is sufficient for compensating the long term frequency aging of this laser, by acting on the temperature.

The RLS optical functions are housed in a compact optical module where off-the-shelf fiber-optic components are spliced together (Fig. 4
Fig. 4 On the left: drawing of the compact optical module with embedded diode laser local oscillator. On the right a picture of the top layer of the optical module with spliced optical components.
). This module contains the laser diode and all the critical components of the station in terms of phase stability: two Faraday mirrors, two isolators and a few couplers. Consequently, the fiber pigtail lengths have been minimized and finely matched in order to reduce the effect of the residual thermal fluctuations of the non-common path lengths. The whole optical circuit is housed in an aluminum box (75x120x200 mm) enclosed in a polyurethane foam box. Moreover the temperature is actively stabilized around 25°C using a thermo electric cooler. The temperature varies less than 0.02°C when the ambient temperature fluctuates about 1°C. The beat-note signal at 74 MHz for the laser lock is first filtered with a 75 MHz band pass filter to reduce the noise bandwidth to about 14 MHz. Then it is down converted to 10 MHz and filtered with a narrow 1 MHz bandpass filter. In order to make the control system insensitive to amplitude fluctuations, we use a logarithmic amplifier. A digital phase-frequency detector generates the error signal applied through a loop filter (PLL1) to the laser diode. Fast corrections (100 kHz bandwidth) are applied via laser injection current. Slow corrections (< 1 Hz) are applied to the laser temperature controller. The station is automatically operated by microcontrollers in order to achieve autonomous operation. First of all, one microcontroller operates the local laser phase-lock acquisition. The laser frequency is swept and the polarization controller parameters are changed until the beat-note signal at the detection exceeds a pre-defined power level. Once locked the microcontroller implements a simple threshold operation on the polarization controller, adjusting the polarization state when the beat-note amplitude drops below a reference level.

4. Results and discussions

The Allan deviation is 5 × 10−15 at 1 s averaging time and scales down as 1/τ from 1 s to 30 000 s reaching about 3 × 10−19 (measurement bandwidth of 10 Hz, black squares). With the full bandwidth (about 100 kHz), the Allan deviation is 8 times larger (blue up-triangles).

5. Conclusion

Acknowledgments

This work would not have been possible without the support of the GIP RENATER. The authors are deeply grateful to L. Gydé, T. Bono and E. Camisard from GIP RENATER for technical support. We also acknowledge F. Wiotte and A. Kaladjian from LPL and B. Venon from LNE-Syrte Observatoire de Paris for technical support. We acknowledge funding support from the Agence Nationale de la Recherche (ANR BLANC 2011-BS04-009-01), Université Paris 13 and IFRAF-Conseil Régional Ile-de-France.

References and links

1.

R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia 48(5), 283–289 (2011). [CrossRef]

2.

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia 49(1), 82–87 (2012). [CrossRef]

3.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr. 59(3), 391–409 (2012). [CrossRef]

4.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett. 98(7), 070802 (2007). [CrossRef] [PubMed]

5.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010). [CrossRef] [PubMed]

6.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011). [CrossRef] [PubMed]

7.

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics 5(4), 203–210 (2011) (and references therein). [CrossRef]

8.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett. 108(9), 090801 (2012). [CrossRef] [PubMed]

9.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett. 108(15), 153002 (2012). [CrossRef] [PubMed]

10.

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D 48(1), 35–41 (2008). [CrossRef]

11.

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control. 57(1), 168–174 (2010). [CrossRef]

12.

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010). [CrossRef]

13.

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas. 61(9), 2573–2580 (2012). [CrossRef]

14.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32(21), 3056–3058 (2007). [CrossRef] [PubMed]

15.

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B 25(12), 2029–2035 (2008). [CrossRef]

16.

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009). [CrossRef] [PubMed]

17.

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express 19(17), 16498–16507 (2011). [CrossRef] [PubMed]

18.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336(6080), 441–444 (2012). [CrossRef] [PubMed]

19.

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004). [CrossRef]

20.

F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett. 34(5), 692–694 (2009). [CrossRef] [PubMed]

21.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express 4(8), 082203 (2011). [CrossRef]

22.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S03P1 transition in laser-cooled 24Mg,” New J. Phys. 13(12), 125010 (2011). [CrossRef]

23.

F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009). [CrossRef] [PubMed]

24.

O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express 18(16), 16849–16857 (2010). [CrossRef] [PubMed]

25.

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18(15), 16102–16111 (2010). [CrossRef] [PubMed]

26.

A. Blanchard, Phase-Lock Loops (John Wiley and Sons, 1976), Chap. 12.

27.

G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 21, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 22, 2012
Published: September 28, 2012

Citation
Olivier Lopez, Adil Haboucha, Bruno Chanteau, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli, "Ultra-stable long distance optical frequency distribution using the Internet fiber network," Opt. Express 20, 23518-23526 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011). [CrossRef]
  2. S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012). [CrossRef]
  3. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012). [CrossRef]
  4. N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007). [CrossRef] [PubMed]
  5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010). [CrossRef] [PubMed]
  6. M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011). [CrossRef] [PubMed]
  7. H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011) (and references therein). [CrossRef]
  8. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012). [CrossRef] [PubMed]
  9. J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012). [CrossRef] [PubMed]
  10. O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008). [CrossRef]
  11. M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010). [CrossRef]
  12. O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010). [CrossRef]
  13. Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012). [CrossRef]
  14. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett.32(21), 3056–3058 (2007). [CrossRef] [PubMed]
  15. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008). [CrossRef]
  16. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009). [CrossRef] [PubMed]
  17. M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011). [CrossRef] [PubMed]
  18. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012). [CrossRef] [PubMed]
  19. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004). [CrossRef]
  20. F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett.34(5), 692–694 (2009). [CrossRef] [PubMed]
  21. A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011). [CrossRef]
  22. J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011). [CrossRef]
  23. F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009). [CrossRef] [PubMed]
  24. O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010). [CrossRef] [PubMed]
  25. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010). [CrossRef] [PubMed]
  26. A. Blanchard, Phase-Lock Loops (John Wiley and Sons, 1976), Chap. 12.
  27. G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited