## Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement |

Optics Express, Vol. 20, Issue 23, pp. 25228-25238 (2012)

http://dx.doi.org/10.1364/OE.20.025228

Acrobat PDF (2675 KB)

### Abstract

Quantum entanglement of two photons created by spontaneous parametric downconversion (SPDC) can be used to probe quantum optical phenomena during a single cycle of light. Harris [Opt. Express **98**, 063602 (2007)] suggested using ultrabroad parametric fluorescenc generated from a quasi-phase-matched (QPM) device whose poling period is chirped. In the Harris’s original proposal, it is assumed that the photons are collinearly generated and then spatially separated by frequency filtering Here, we alternatively propose using noncollinearly generated SPDC. In our numerical calculation, to achieve 1.2 cycle temporal correlation for a 532 nm pump laser, only 10% -chirped device is sufficien when noncollinear condition is applied, while a largely chirped (50%) device is required in collinear condition. We also experimentally demonstrate an octave-spanning (790–1610 nm) noncollinear parametric fluorescenc from a 10% chirped MgSLT crystal using both a superconducting nanowire single-photon detector and photomultiplier tube as photon detectors. The observed SPDC bandwidth is 194 THz, which is the largest width achieved to date for a chirped QPM device. From this experimental result, our numerical analysis predicts that the bi-photon can be compressed to 1.2 cycles with appropriate phase compensation.

© 2012 OSA

## 1. Introduction

2. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science **316**, 726–729 (2007). [CrossRef] [PubMed]

3. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. **59**, 2044–2046 (1987). [CrossRef] [PubMed]

4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. **75**, 4337–4341 (1995). [CrossRef] [PubMed]

5. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. **87**, 117902 (2001). [CrossRef] [PubMed]

*ν*), potential applications include an enhancement in the resolution of quantum optical coherence tomography [6

_{c}6. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A **65**, 053817 (2002). [CrossRef]

7. N. Mohan, O. Minaeva, G. N. Goltsman, M. F. Saleh, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Optics **48**, 4009–4017 (2009). [CrossRef]

8. J. Javanainen and P. L. Gould, “Linear intensity sependence of a two-photon transition rate,” Phys. Rev. A **41**, 5088–5091 (1990). [CrossRef] [PubMed]

10. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. **101**, 153602 (2008). [CrossRef] [PubMed]

*ν*that is comparable to its center frequency

*ν*=

_{c}*c/λ*, e.g., 282 THz at a center wavelength of

_{c}*λ*= 1064 nm. In bulk nonlinear crystals, broadband phase matching within a small solid angle of emission can only occur over a short interaction length, thereby degrading the photon pair generation rate. To date, such pair emission has been limited to a bandwidth of Δ

_{c}*ν*= 154 THz (253 nm) at

*λ*= 702 nm by introducing a temperature gradient in a crystal [11

_{c}11. K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field” Journal of Experimental and Theoretical Physics **112**, 20 (2011). [CrossRef]

*ν*=73 THz (160 nm) at

*λ*= 808 nm using two bulk crystals with their optic axes tilted relative to each other [12

_{c}12. M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescenc using multiple bulk nonlinear crystals,” Opt. Express **20** (13), 13977–13987 (2012). [CrossRef] [PubMed]

13. S. E. Harris, “ Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. **98**, 063602 (2007). [CrossRef] [PubMed]

14. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers” J. Opt. Soc. Am. B **25**, 1402–1413 (2008). [CrossRef]

*λ*= 808 nm to achieve Δ

_{c}*ν*=188 THz for a two-photon interference experiment [15

15. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. **100**, 183601 (2008). [CrossRef] [PubMed]

*λ*= 1064 nm, resulting in Δ

_{c}*ν*=166 THz in a collinear condition [7

7. N. Mohan, O. Minaeva, G. N. Goltsman, M. F. Saleh, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Optics **48**, 4009–4017 (2009). [CrossRef]

*λ*= 1064 nm and Δ

_{c}*ν*=40 THz at a nondegenerate lobe [16

16. S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. **104**, 253602 (2010). [CrossRef] [PubMed]

*ν*=3000 nm) i.e., a QPM device with large chirping (50%) for 1.2 cycle temporal correlation when a pump laser at 532 nm is used (see section 2 for detail). The realization of such a device is still beyond current technologies. In addition, the dichroic mirror used to separate the fluorescenc to lower and higher frequencies also causes additional problems like anomalous dispersion near the cutoff wavelength.

13. S. E. Harris, “ Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. **98**, 063602 (2007). [CrossRef] [PubMed]

18. M. Niigaki, T. Hirohata, T. Suzuki, H. Kan, and T. Hiruma, “Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction,” Appl. Phys. Lett. **71**, 2493–2495 (1997). [CrossRef]

*μ*m along the pump direction, corresponding to 10% chirping. The spectrum thus obtained for both the signal and idler beam has a bandwidth of 194 THz, the largest so far observed for visible light pumping (at 532 nm).

16. S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. **104**, 253602 (2010). [CrossRef] [PubMed]

19. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. **94**, 073601 (2005). [CrossRef]

^{−3}can be achieved and 7.5 cycle signal may be obtained. In other words, the parametric fluo rescence with appropriate phase compensation can produce monocycle entangled photon pairs. These results will open the way for ultrafast two-photon processing technologies [15

15. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. **100**, 183601 (2008). [CrossRef] [PubMed]

6. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A **65**, 053817 (2002). [CrossRef]

7. N. Mohan, O. Minaeva, G. N. Goltsman, M. F. Saleh, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Optics **48**, 4009–4017 (2009). [CrossRef]

20. S. Du, “Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs,” Phys. Rev. A **83**, 033807 (2011). [CrossRef]

## 2. Generation and measurement of ultrabroad two-photon states

### 2.1. Chirped quasi-phase-matched device for generation of two entangled photons

13. S. E. Harris, “ Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. **98**, 063602 (2007). [CrossRef] [PubMed]

21. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifier using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B **25**, 463–480 (2008). [CrossRef]

*z*axis is along the pump beam, with origin at the input face of the crystal;

*K*(

*z*) is the spatial wavevector with poling period Λ(

*z*), where Λ

_{0}is the poling period at the input face; and

*η*is the chirp rate increasing the poling period as

*z*increases. The noncollinear SPDC process converts the pump photons at an angular frequency

*ω*into signal (

_{p}*ω*) and idler (

_{s}*ω*) photons propagating at angle

_{i}*φ*relative to the pump. Conservation of energy and momentum [22

22. S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A **77**, 043807 (2008). [CrossRef]

*k*(

*ω*) =

*n*(

_{e}*ω*)

*ω/c*

_{0}is the wavevector component with extraordinary refractive index

*n*(

_{e}*ω*) and speed of light

*c*

_{0}, and Δ

*k*(

*ω*,

*z; φ*) is the phase mismatch. The coupled wave equation for the two-photon wavefunction at the output face of the crystal is [13

**98**, 063602 (2007). [CrossRef] [PubMed]

23. A. Gatti, R. Zambrini, M. San Miguel, and L. A. Lugiato, “Multiphoton multimode polarization entanglement in parametric down-conversion,” Phys. Rev. A **68**, 053807 (2003). [CrossRef]

*κ*is the parametric fluorescenc generation efficieny and

*ψ*(

*ω*,

*L; φ*)|

^{2}/2

*π*| [13

**98**, 063602 (2007). [CrossRef] [PubMed]

*φ*= 0) and noncollinear cases.

### 2.2. Comparison of entangled photons in the collinear and noncollinear cases

*and |Ψ〉*

_{col}*, are where |〉*

_{noncol}*corresponds to a spatial mode of the biphoton and |〉*

_{col}

_{s}_{(}

_{i}_{)}that of the signal (idler) state of the entangled two-photon state.

**98**, 063602 (2007). [CrossRef] [PubMed]

*ω*≤

*ω*/2 while reflectin those at

_{p}*ω*≥

*ω*/2 using a frequency filte , one of which passes through a dispersive element

_{p}*H*(

*ω*) and the other experiences a time delay

*G*(

*ω*−

_{p}*ω; τ*). The two are then combined in an SFG crystal. The resulting signal for ideal phase matching is in the collinear case. For the noncollinear case, since each photons need not to be separated by such wavelength filter in order to experience either

*H*(

*ω*) or

*G*(

*ω*−

_{p}*ω; τ*), For

*ω*/2 to divide biphotons in two pathways by a dichroic mirror. If the complex phase of

_{p}*ψ*(

*ω*,

*L; φ*) could be compensated with

*H*(

*ω*), i.e.

*ψ*(

*ω*,

*L; φ*)

*H*(

*ω*) being real in the loss-free scenario, then

*τ*;

*φ*) is the two-photon wavefunction in the time domain, according to the Fourier transform in Eq. (8). The frequency bandwidth to reach an SFG temporal width of 4.4 fs is calculated from Fig. 2, using Eqs. (7) and (8) and the Sellmeier equation for MgO-doped stoichiometric lithium tantalate at 293 K [24]. In Fig. 2(a), the fluorescenc spectrum spans from 650 to 3500 nm with a poling period that increases from Λ

_{0}= 8.000

*μm*to 11.765

*μm*, i.e., 47% chirping. In contrast, the noncollinear fluorescenc spectrum for

*φ*= 0.25deg in Fig. 2(b) only spans from 790 to 1610 nm with a poling period that increases from Λ

_{0}= 8.000

*μm*to 8.825

*μm*, i.e., a chirp rate of 10%, relaxing the difficult of creating the structure. The inset of Fig. 2(b) shows the SFG signal for the collinear or noncollinear cases, which are almost identical. Also, when we set equal frequency bandwidths for SFG as in Fig. 2(b), the FWHM is only 8.8 fs (2.5 cycle) for collinear SPDC while noncollinear SPDC gave 4.4 fs (1.2 cycle).

**98**, 063602 (2007). [CrossRef] [PubMed]

## 3. Experimental setup and fabrication of chirped-QPM device

### 3.1. Fabrication of the device

25. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mat. Sci. Eng. B-Solid.120, 146–149 (2005). [CrossRef]

26. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express **19**, 22588–22593 (2011). [CrossRef] [PubMed]

*η*=367.112 rad·cm

^{–2}corresponding to Λ

_{0}=8.000

*μ*m. The device is designed for a first-orde QPM in the type-zero SPDC condition in which all photons consist of extraordinary rays, as shown in Fig. 1. This device, designed for a cw pump at a wavelength of 532 nm, is temperature controlled by a Peltier unit at 293 K.

### 3.2. Calculation of the tuning curve

22. S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A **77**, 043807 (2008). [CrossRef]

*k*(

*ω*,

*L; φ*)|

^{2}in Eq. (4) is plotted as a function of wavelength

*λ*and emission angle

*φ*. The horizontal axis of the tuning curve gives the wavelength of the photons and the vertical axis the emission angle of the photons into air. Note that in the contour map, the value at specifi point expresses the square of the two-photon wavefunction for the combination of

*λ*and

*θ*[23

23. A. Gatti, R. Zambrini, M. San Miguel, and L. A. Lugiato, “Multiphoton multimode polarization entanglement in parametric down-conversion,” Phys. Rev. A **68**, 053807 (2003). [CrossRef]

*φ*= 0.25 ± 0.14 degree and −0.25 ± 0.14 degree, each marked by a red box in Fig. 3, for which no significan change occurs in the spectrum compared to the collinear case. In the following experiment, we used an iris having two horizontal apertures (2 mm in diameter) to limit the spatial mode. The alignment of the iris was accomplished by observing the parametric fluorescenc from QPM device at 304 K with a CCD camera (Princeton Instruments PIXIS 1024 BTSM).

### 3.3. Experimental setup

*μ*m, due to the use of two Bragg gratings. The output light is coupled into a dispersion-shifted fibe having a mode fiel diameter of 8.0

*μ*m in wavelength of 1550 nm. The photons are then routed either to a superconducting nanowire single photon detector (SNSPD) [17] or to a photomultiplier tube (PMT). Both detectors create a pulse that is measured by a photon counter (Stanford Research Systems SR400) with an integration time of 1 s.

## 4. Spectrum of the noncollinear parametric fluorescence

### 4.1. Experiment with SNSPD

*μ*A. Single-photon detection from at least 500 to 1650 nm is possible, however, the quantum efficien y exponentially decreases as a function of wavelength (30.7% at 600 nm, 16.6% at 800 nm, 10.3% at 1000 nm, 3.3% at 1300nm and 1.1% at 1550 nm with a bias current of 0.95 Ic where Ic is a critical current ). For this reason, it is necessary to test its performance in the NIR wavelength range.

*δλ*: set to 5 nm), i. e.

*ω*,

*L; φ*) in Eq. (4) where

*δω*is the effective resolution in the angular frequency region. It has then been scaled vertically to match the data. The wavelength range from 790 to 1610 nm is in reasonable agreement with the numerical prediction. Moreover, we have confirme in Fig. 5(b) that the longer wavelength range actually spans until 1610 nm with the same experimental condition except the accumulation time of 5 sec. On the other hand, one can see a discrepancy between the estimated photon counts at shorter wavelengths and theoretical curve in Fig. 5(a) from 800nm to 1000nm. This difference may originate from the wavelength dependence of the coupling efficien y into the multi-mode fibe due to the aberration in the objective lens. The photon counts drop from approximately 2 × 10

^{4}counts/s at 800 nm to only 140 counts/s at 1600 nm. This large change arises from the exponential decrease in the quantum efficien y. Below 790 nm, additional noise arises due to stray light from the pump laser which is smaller than SPDC by two orders of magnitude. Nevertheless, the generated photon pairs exhibit spectral indistinguishability in their amplitudes; only the phase has to be compensated to compress biphotons into a single cycle, used to achieve two-photon temporal entanglement [27

27. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A **56**, 1627 (1997). [CrossRef]

### 4.2. Experiment with PMT

^{4}counts/s. Figure 6 shows a calibrated logarithmic plot of parametric fluorescenc measured by a PMT after removal of all glass filters They are in good agreement with the numerical results, except near 1600 nm since the quantum efficien y of the PMT suddenly decreases from 1550 nm. As is evident from these results, the flatnes of quantum efficien y suppressed the fluctuatio of the calibrated counts at longer wavelength range, compared with SNSPD data in which small photon counts are multiplied in calibration procedure. Note that unlike Fig. 5, we did not use a long-wavelength pass file for Fig. 6 because the second-order diffracted photons at the wavelength around 800nm are negligible due to the fla quantum efficieny of PMT for a wide range of wavelength.

## 6. Conclusion

**98**, 063602 (2007). [CrossRef] [PubMed]

## Acknowledgments

## References and links

1. | M. A. Nielsen and I. L. Chuang, |

2. | T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science |

3. | C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. |

4. | P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. |

5. | V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. |

6. | A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A |

7. | N. Mohan, O. Minaeva, G. N. Goltsman, M. F. Saleh, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Optics |

8. | J. Javanainen and P. L. Gould, “Linear intensity sependence of a two-photon transition rate,” Phys. Rev. A |

9. | J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett. |

10. | O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. |

11. | K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field” Journal of Experimental and Theoretical Physics |

12. | M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescenc using multiple bulk nonlinear crystals,” Opt. Express |

13. | S. E. Harris, “ Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. |

14. | M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers” J. Opt. Soc. Am. B |

15. | M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. |

16. | S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. |

17. | S. Subashchandran, R. Okamoto, A. Tanaka, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, and S. Takeuchi, “Spectral dependence of ultra-low dark count superconducting single photon detector for the evaluation of broadband parametric fluorescence” |

18. | M. Niigaki, T. Hirohata, T. Suzuki, H. Kan, and T. Hiruma, “Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction,” Appl. Phys. Lett. |

19. | A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. |

20. | S. Du, “Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs,” Phys. Rev. A |

21. | M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifier using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B |

22. | S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A |

23. | A. Gatti, R. Zambrini, M. San Miguel, and L. A. Lugiato, “Multiphoton multimode polarization entanglement in parametric down-conversion,” Phys. Rev. A |

24. | T. Katagai, S. Jianhong, I. Shoji, M. Nakamura, and S. Kurimura, “Refractive index dispersion of Mg-doped stoichiometric LiTaO3,” in |

25. | N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mat. Sci. Eng. B-Solid.120, 146–149 (2005). [CrossRef] |

26. | H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express |

27. | W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A |

28. | S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express |

29. | Note that the spectral phase of biphotons is mostly an even function of |

**OCIS Codes**

(190.4360) Nonlinear optics : Nonlinear optics, devices

(270.5570) Quantum optics : Quantum detectors

(320.7160) Ultrafast optics : Ultrafast technology

(190.4975) Nonlinear optics : Parametric processes

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**Citation**

Akira Tanaka, Ryo Okamoto, Hwan Hong Lim, Shanthi Subashchandran, Masayuki Okano, Labao Zhang, Lin Kang, Jian Chen, Peiheng Wu, Toru Hirohata, Sunao Kurimura, and Shigeki Takeuchi, "Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement," Opt. Express **20**, 25228-25238 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25228

Sort: Year | Journal | Reset

### References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
- T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007). [CrossRef] [PubMed]
- C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
- P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
- V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett.87, 117902 (2001). [CrossRef] [PubMed]
- A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A65, 053817 (2002). [CrossRef]
- N. Mohan, O. Minaeva, G. N. Goltsman, M. F. Saleh, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Optics48, 4009–4017 (2009). [CrossRef]
- J. Javanainen and P. L. Gould, “Linear intensity sependence of a two-photon transition rate,” Phys. Rev. A41, 5088–5091 (1990). [CrossRef] [PubMed]
- J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett.62, 1603 (1989). [CrossRef] [PubMed]
- O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008). [CrossRef] [PubMed]
- K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field” Journal of Experimental and Theoretical Physics112, 20 (2011). [CrossRef]
- M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescenc using multiple bulk nonlinear crystals,” Opt. Express20 (13), 13977–13987 (2012). [CrossRef] [PubMed]
- S. E. Harris, “ Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett.98, 063602 (2007). [CrossRef] [PubMed]
- M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers” J. Opt. Soc. Am. B25, 1402–1413 (2008). [CrossRef]
- M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008). [CrossRef] [PubMed]
- S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett.104, 253602 (2010). [CrossRef] [PubMed]
- S. Subashchandran, R. Okamoto, A. Tanaka, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, and S. Takeuchi, “Spectral dependence of ultra-low dark count superconducting single photon detector for the evaluation of broadband parametric fluorescence” Proc. SPIE8268, 82681V (2011).
- M. Niigaki, T. Hirohata, T. Suzuki, H. Kan, and T. Hiruma, “Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction,” Appl. Phys. Lett.71, 2493–2495 (1997). [CrossRef]
- A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett.94, 073601 (2005). [CrossRef]
- S. Du, “Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs,” Phys. Rev. A83, 033807 (2011). [CrossRef]
- M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifier using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B25, 463–480 (2008). [CrossRef]
- S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A77, 043807 (2008). [CrossRef]
- A. Gatti, R. Zambrini, M. San Miguel, and L. A. Lugiato, “Multiphoton multimode polarization entanglement in parametric down-conversion,” Phys. Rev. A68, 053807 (2003). [CrossRef]
- T. Katagai, S. Jianhong, I. Shoji, M. Nakamura, and S. Kurimura, “Refractive index dispersion of Mg-doped stoichiometric LiTaO3,” in Meeting Abstracts of the Japan Society of Applied Physics, (Academic, Toyama, Japan, 2009), 3, 11a-P8-33, 1107.
- N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mat. Sci. Eng. B-Solid.120, 146–149 (2005). [CrossRef]
- H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express19, 22588–22593 (2011). [CrossRef] [PubMed]
- W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627 (1997). [CrossRef]
- S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express14, 10101–10108 (2006). [CrossRef] [PubMed]
- Note that the spectral phase of biphotons is mostly an even function of ωp/2; because a Hong-Ou-Mandel interferometer cancels even order dispersion, the HOM dip that appears in reference [15] using a chirped PPSLT crystal leads to a FWHM of 4 fs, which is nearly Fourier-transform limited.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.