OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 24 — Nov. 19, 2012
  • pp: 26996–27002
« Show journal navigation

Highly birefringent dual-mode microstructured fiber with enhanced polarimetric strain sensitivity of the second order mode

Tadeusz Tenderenda, Krzysztof Skorupski, Mariusz Makara, Gabriela Statkiewicz-Barabach, Pawel Mergo, Pawel Marc, Leszek R. Jaroszewicz, and Tomasz Nasilowski  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26996-27002 (2012)
http://dx.doi.org/10.1364/OE.20.026996


View Full Text Article

Acrobat PDF (935 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of theoretical and experimental characterization of a designed and manufactured dual-mode highly birefringent microstructured fiber. We also demonstrate the measured values of polarimetric temperature and strain sensitivity of both the fundamental and second order modes. As the mode field of the second order mode has a strong interaction with the fiber air holes, we observed a significant (over two orders of magnitude) increase in the polarimetric strain sensitivity of this mode in comparison to the fundamental mode. The enhanced strain sensitivity together with the low temperature sensitivity makes our fiber very attractive for application as extremely sensitive temperature independent strain transducers.

© 2012 OSA

1. Introduction

Microstructured fibers (MSF) also called photonic crystal fibers (PCF) are a subject of extensive research for over a decade [1

1. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]

]. This is mainly due to the fact that by changing the topology and distribution of the air holes, the fiber guiding properties can be significantly modified and tailored to desired purposes. It has been already reported that PCFs can be successfully used in various fields of photonics, e.g. supercontinuum generation [2

2. L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

], fiber lasers [3

3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003). [CrossRef] [PubMed]

] or as dispersion compensating and bend-insensitive fibers [4

4. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).

, 5

5. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]

]. Furthermore MSFs find application in sensing and metrology as the fiber temperature and mechanical (i.e. strain, pressure, etc.) sensitivities also depend on the air filling factor, lattice period, size, shape and location of the air holes [6

6. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010). [CrossRef] [PubMed]

, 7

7. T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009). [CrossRef]

]. Additionally, dedicated design of the air hole lattice can enable very stable propagation of higher order modes. In [8

8. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004). [CrossRef]

] Ju presented a photonic crystal fiber with two-mode propagation at a very broad wavelength range of over 650 nm (as opposed to approximately 150 nm reported for conventional elliptical core fibers), which was successfully implemented in a two-mode interferometer sensor for axial strain measurements.

One of the disadvantages of polarimetric optical fiber sensors is the inconveniency of the phase shift or birefringence change measurement. However, combining HB fibers, with fiber Bragg gratings – FBG (with their specific properties including mechanical sensitivity of the Bragg wavelength or the easiness of multiplexing FBGs in multiple arrays), allows for construction of novel and convenient fiber optic sensors, which can be easily monitored on spectrometers or commercially available interrogation units [17

17. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006). [CrossRef] [PubMed]

19

19. G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009). [CrossRef]

].

In this paper, we present a highly birefringent MSF dedicated for reliable FBG inscription (due to its high core Ge doping and specific geometry, which minimizes the negative effects of scattering and defocusing the FBG inscription beam [20

20. T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008). [CrossRef]

]) – see Fig. 1
Fig. 1 SEM image of the investigated HB MSF cross-section.
. Furthermore, the fiber presented in our experiment has a stabile dual (fundamental and second order) mode propagation. As reported in [21

21. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005). [CrossRef]

] higher order modes in microstructured fibers are strongly dependent on the air-silica cladding properties and can be more sensitive to external environmental changes than the fundamental mode. As the second order mode maxima in our fiber [Figs. 2(b)
Fig. 2 Experimental near field distribution of: E11 fundamental mode (a), E21 second order mode (b) and electric field distribution according to simulations of the E11 (c) and E21 mode (d) of the investigated HB MSF.
and 2(d)] are closer to the cladding hollow regions and are subjected to higher strain distributions, we expect the second order mode polarimetric strain sensitivity to significantly increase in comparison to the fundamental mode sensitivity.

2. Fiber modeling and experimental characterization

3. Measurements of temperature and strain polarimetric sensitivity

The optical fiber polarimetric sensitivity can be experimentally defined as [22

22. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005). [CrossRef]

]:
Kξ=dΔϕdξL
(1)
where Δϕ is the phase shift induced by an external perturbation change between the polarization modes and L is the fiber length exposed to the external perturbation ξ.

The results of polarimetric sensitivity to temperature are given in Table 2

Table 2. Polarimetric sensitivity to strain (Kε) and temperature (KT) of the fundamental (E11) and second order (E21) modes measured at λ = 1.55 µm.

table-icon
View This Table
| View All Tables
. As one can see, the temperature sensitivity of the second order mode is an order of magnitude higher than the sensitivity of the fundamental mode, but is still an order of magnitude lower than the temperature sensitivity of conventional HB PM fibers (i.e. bow-tie, PANDA and elliptical core fibers) [24

24. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993). [CrossRef] [PubMed]

]. Furthermore the sign of KT in conventional HB fibers is negative, which means that the birefringence decreases against temperature due to thermal stress release. As mentioned in the introduction to this paper the thermal properties, therefore the sign and value of KT in microstructured fibers strongly depend on the air hole arrangement and fiber geometry. Our results of low and positive polarimetric sensitivity to temperature at λ = 1.55 µm are in agreement with the recently reported experimental and numerical results for fibers with similar “in-line” air hole geometry [19

19. G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009). [CrossRef]

, 25

25. T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007). [CrossRef]

].

4. Conclusion

In this work we report a reliable microstructured fiber dedicated for FBG inscription and characterized by very high, well defined and controllable birefringence of the second order mode. We present the results of theoretical modeling including numerical calculations of confinement losses and birefringence of the first four modes (E11, E21, E31 and E12, respectively). Furthermore, we show the experimental values of beat length and birefringence of the first two modes at a large wavelength range from 1.30 µm to 1.65 µm measured with the lateral force method, which are in a very good agreement with the numerical simulation. Additionally, we demonstrate (basing on experimental results) that the dual-mode MSF has very low polarimetric temperature sensitivity for fundamental mode and also relatively low for second order mode. Moreover, the polarimetric strain sensitivity is low for fundamental mode, however very high (two orders of magnitude larger) for second order mode. Therefore we prove, that higher order modes can exhibit significantly higher sensitivities to external strain, if they are located closer to the MSF hollow regions than the fundamental mode and that the presented fiber allows for the construction of a temperature independent very sensitive strain transducer.

Acknowledgements

The work described in this paper was partially supported by the EU FP7 as the COST action TD1001, by the Polish Ministry of Science and Higher Education within the Innovative Economy Programme as the key project POIG.01.03.01-14-016/08-06 and research project NR02 0074 10, as well as by the Polish Agency for Enterprise Development within the Innovative Economy Programme as projects POIG.01.04.00-06-017/11 and POIG.01.04.00-18-008/10.

References and links

1.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]

2.

L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

3.

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003). [CrossRef] [PubMed]

4.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).

5.

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]

6.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010). [CrossRef] [PubMed]

7.

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009). [CrossRef]

8.

J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 16(11), 2472–2474 (2004). [CrossRef]

9.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000). [CrossRef] [PubMed]

10.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001). [CrossRef]

11.

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44(13), 2652–2658 (2005). [CrossRef] [PubMed]

12.

J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004). [CrossRef] [PubMed]

13.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986). [CrossRef]

14.

W. J. Bock and W. Urbanczyk, “Measurements of sensitivity of birefringent holey fiber to temperature, elongation, and hydrostatic pressure,” Proc. of the 21st IEEE-Instrumentation and Measurement Technology Conference2, 1228–1232 (2004).

15.

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004). [CrossRef] [PubMed]

16.

C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004). [CrossRef]

17.

C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006). [CrossRef] [PubMed]

18.

T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21(1), 6–8 (2009). [CrossRef]

19.

G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009). [CrossRef]

20.

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett. 20(8), 554–556 (2008). [CrossRef]

21.

C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE 5855, 302–305 (2005). [CrossRef]

22.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B 81(2-3), 325–331 (2005). [CrossRef]

23.

T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE 7753, 77533O, 77533O-4 (2011). [CrossRef]

24.

F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993). [CrossRef] [PubMed]

25.

T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol. 18(10), 3055–3060 (2007). [CrossRef]

26.

T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE 8426, 84260D, 84260D-8 (2012). [CrossRef]

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 14, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 18, 2012
Published: November 15, 2012

Citation
Tadeusz Tenderenda, Krzysztof Skorupski, Mariusz Makara, Gabriela Statkiewicz-Barabach, Pawel Mergo, Pawel Marc, Leszek R. Jaroszewicz, and Tomasz Nasilowski, "Highly birefringent dual-mode microstructured fiber with enhanced polarimetric strain sensitivity of the second order mode," Opt. Express 20, 26996-27002 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-26996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  2. L. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express11(1), 48–53 (2003). [CrossRef] [PubMed]
  4. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).
  5. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  6. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express18(14), 15113–15121 (2010). [CrossRef] [PubMed]
  7. T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B94(4), 635–640 (2009). [CrossRef]
  8. J. Ju, W. Jin, and M. S. Demokan, “Two-mode operation in highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.16(11), 2472–2474 (2004). [CrossRef]
  9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000). [CrossRef] [PubMed]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett.13(6), 588–590 (2001). [CrossRef]
  11. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbańczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt.44(13), 2652–2658 (2005). [CrossRef] [PubMed]
  12. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express12(5), 956–960 (2004). [CrossRef] [PubMed]
  13. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986). [CrossRef]
  14. W. J. Bock and W. Urbanczyk, “Measurements of sensitivity of birefringent holey fiber to temperature, elongation, and hydrostatic pressure,” Proc. of the 21st IEEE-Instrumentation and Measurement Technology Conference2, 1228–1232 (2004).
  15. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express12(19), 4490–4495 (2004). [CrossRef] [PubMed]
  16. C. H. L. Zhao, X. Yang, Ch. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004). [CrossRef]
  17. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett.31(15), 2260–2262 (2006). [CrossRef] [PubMed]
  18. T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett.21(1), 6–8 (2009). [CrossRef]
  19. G. Luyckx, E. Voet, T. Geernaert, K. Chah, T. Nasilowski, W. De Waele, W. Van Paepegem, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, J. Degrieck, F. Berghmans, and H. Thienpont, “Response of FBGs in microstructured and bow tie fibers embedded in laminated composite,” IEEE Photon. Technol. Lett.21(18), 1290–1292 (2009). [CrossRef]
  20. T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, “Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers,” IEEE Photon. Technol. Lett.20(8), 554–556 (2008). [CrossRef]
  21. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterization,” Proc. SPIE5855, 302–305 (2005). [CrossRef]
  22. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” J. Appl. Phys. B81(2-3), 325–331 (2005). [CrossRef]
  23. T. Nasilowski, K. Skorupski, M. Makara, G. Statkiewicz-Barabach, P. Mergo, P. Marc, and L. Jaroszewicz, “Very high polarimetric sensitivity to strain of second order mode of highly birefringent microstructured fibre,” Proc. SPIE7753, 77533O, 77533O-4 (2011). [CrossRef]
  24. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt.32(13), 2213–2218 (1993). [CrossRef] [PubMed]
  25. T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Measurements of polarimetric sensitivity to temperature in birefringent holey fibres,” Meas. Sci. Technol.18(10), 3055–3060 (2007). [CrossRef]
  26. T. Tenderenda, M. Murawski, M. Szymanski, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, K. Poturaj, M. Makara, K. Skorupski, P. Marc, L. R. Jaroszewicz, and T. Nasilowski, “Fibre Bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors,” Proc. SPIE8426, 84260D, 84260D-8 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited