## Bragg-Scattering conversion at telecom wavelengths towards the photon counting regime |

Optics Express, Vol. 20, Issue 24, pp. 27220-27225 (2012)

http://dx.doi.org/10.1364/OE.20.027220

Acrobat PDF (1686 KB)

### Abstract

We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

© 2012 OSA

## 1. Introduction

1. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A **85**, 053815 (2012). [CrossRef]

3. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. **8**, 560–568 (2002). [CrossRef]

3. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. **8**, 560–568 (2002). [CrossRef]

4. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London) **478**, 360–363 (2011). [CrossRef]

8. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A **82**, 013833 (2010). [CrossRef]

9. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express **13**, 9131–9142 (2005). [CrossRef] [PubMed]

10. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. **105**, 093604 (2010). [CrossRef] [PubMed]

*SiN*waveguides, with pumps at 1550 nm and signals and idler at 980 nm [11

_{x}11. I. Agha, M. Davanço, D. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in *SiN _{x}* waveguides,” Opt. Lett.

**37**, 2997–2999 (2012). [CrossRef] [PubMed]

13. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express **27**, 2236–2244 (2005). [CrossRef]

## 2. Experimental setup

14. K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett. **24**, 258–260 (2012). [CrossRef]

*L*= 450

*m*long highly nonlinear fiber (HNLF) whose zero dispersion wavelength (ZDW) was at 1545 nm. The fiber dispersion slope was 0.018

*ps*/(

*km*·

*nm*

^{2}) and the fiber nonlinear coefficient was of

*γ*= 10

*W*

^{−1}

*km*

^{−1}(see also Ref. [15

15. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express **14**, 8995–8999 (2006). [CrossRef] [PubMed]

14. K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett. **24**, 258–260 (2012). [CrossRef]

^{−6}

*ns*

^{−1}.

## 3. Frequency conversion with non attenuated signal: numerical simulations and experimental results

9. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express **13**, 9131–9142 (2005). [CrossRef] [PubMed]

14. K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett. **24**, 258–260 (2012). [CrossRef]

9. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express **13**, 9131–9142 (2005). [CrossRef] [PubMed]

**13**, 9131–9142 (2005). [CrossRef] [PubMed]

**13**, 9131–9142 (2005). [CrossRef] [PubMed]

4. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London) **478**, 360–363 (2011). [CrossRef]

**13**, 9131–9142 (2005). [CrossRef] [PubMed]

## 4. Experimental results with an attenuated signal

**13**, 9131–9142 (2005). [CrossRef] [PubMed]

*γP*∼ 0.15. Following Ref. [16

_{k}L16. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A **75**, 023803 (2007). [CrossRef]

**13**, 9131–9142 (2005). [CrossRef] [PubMed]

17. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. **31**, 3086–3088 (2006). [CrossRef] [PubMed]

18. E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett. **32**, 2819–2821 (2007). [CrossRef] [PubMed]

*k*, where

_{B}T*k*is the Boltzmann constant and T is the temperature. Following Refs. [13

_{B}13. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express **27**, 2236–2244 (2005). [CrossRef]

18. E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett. **32**, 2819–2821 (2007). [CrossRef] [PubMed]

*R*

_{g,‖}) and perpendicular (

*R*

_{g,⊥}) frequency-dependent Raman gain taking into account the input photon counts. In the right panel of Fig. 3 we present our experimental results obtained with the ECL laser at 1540.7nm (as P1) with 1.1 mW at the HNLF input. Similar results were obtained when using the IFSFLs pumps, but thanks to the narrow spectral width of the ECL, we could explore smaller frequency detunings. For each measurement, we averaged the number of detected photons over 60 seconds. The solid curves in Fig. 3 (right panel) provide the Raman model depicted in Ref. [17

17. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. **31**, 3086–3088 (2006). [CrossRef] [PubMed]

*R*) and anisotropic (

_{g,a}*R*) contributions to the Raman gain. We found that this model fits our measurements very well, except for its perpendicular component on the Stokes side, where we observed a slightly larger orthogonal gain. Figure 3 (right panel) shows that the anisotropic Raman contribution is relevant in our experiments, since for small detunings from the pumps this contribution is higher than the isotropic one [17

_{g,b}17. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. **31**, 3086–3088 (2006). [CrossRef] [PubMed]

*R*

_{g,‖}=

*R*+

_{g,a}*R*, while

_{g,b}*R*

_{g,⊥}=

*R*the gain depolarization factor is therefore as high as

_{g,b}/2,*R*

_{g,⊥}/

*R*

_{g,‖}∼ 0.3. This is the reason why Raman noise was observed even in case C. Such a factor is expected to drop significantly when the signal detuning grows larger, owing to the predominance of the isotropic contribution. Spontaneous FWM may explain some residual disagreements between the experimental results and the pure Raman noise assumption.

## 5. Conclusion

## Acknowledgments

## References and links

1. | D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A |

2. | N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron. |

3. | K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. |

4. | N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London) |

5. | S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) |

6. | S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A |

7. | N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express |

8. | H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A |

9. | C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express |

10. | H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. |

11. | I. Agha, M. Davanço, D. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in 37, 2997–2999 (2012). [CrossRef] [PubMed] |

12. | S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012). |

13. | X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express |

14. | K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett. |

15. | D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express |

16. | Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A |

17. | Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. |

18. | E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett. |

19. | B. P.-P. Kuo, J. M. Fini, L. Gruner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express |

**OCIS Codes**

(190.4370) Nonlinear optics : Nonlinear optics, fibers

(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

(190.5650) Nonlinear optics : Raman effect

(270.0270) Quantum optics : Quantum optics

**ToC Category:**

Four-Wave Mixing in Waveguides and Fibers

**History**

Original Manuscript: September 17, 2012

Revised Manuscript: October 21, 2012

Manuscript Accepted: October 22, 2012

Published: November 19, 2012

**Virtual Issues**

Nonlinear Photonics (2012) *Optics Express*

**Citation**

Katarzyna Krupa, Alessandro Tonello, Victor V. Kozlov, Vincent Couderc, Philippe Di Bin, Stefan Wabnitz, Alain Barthélémy, Laurent Labonté, and Sébastien Tanzilli, "Bragg-Scattering conversion at telecom wavelengths towards the photon counting regime," Opt. Express **20**, 27220-27225 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-24-27220

Sort: Year | Journal | Reset

### References

- D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012). [CrossRef]
- N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008). [CrossRef]
- K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002). [CrossRef]
- N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011). [CrossRef]
- S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005). [CrossRef]
- S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012). [CrossRef]
- N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010). [CrossRef] [PubMed]
- H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010). [CrossRef]
- C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005). [CrossRef] [PubMed]
- H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010). [CrossRef] [PubMed]
- I. Agha, M. Davanço, D. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012). [CrossRef] [PubMed]
- S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).
- X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005). [CrossRef]
- K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012). [CrossRef]
- D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express14, 8995–8999 (2006). [CrossRef] [PubMed]
- Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007). [CrossRef]
- Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett.31, 3086–3088 (2006). [CrossRef] [PubMed]
- E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett.32, 2819–2821 (2007). [CrossRef] [PubMed]
- B. P.-P. Kuo, J. M. Fini, L. Gruner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20, 18611–18619 (2012). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.