OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28398–28408
« Show journal navigation

12-core fiber with one ring structure for extremely large capacity transmission

Shoichiro Matsuo, Yusuke Sasaki, Tsuyoshi Akamatsu, Itaru Ishida, Katsuhiro Takenaga, Kazuhiro Okuyama, Kunimasa Saitoh, and Masanori Kosihba  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28398-28408 (2012)
http://dx.doi.org/10.1364/OE.20.028398


View Full Text Article

Acrobat PDF (1647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The feature of a multicore fiber with one-ring structure is theoretically analyzed and experimentally demonstrated. The one-ring structure overcomes the issues of the hexagonal close-pack structure. The possibility of 10-core fiber with Aeff of 110 μm2 and 12-core fiber with Aeff of 80 μm2 is theoretically presented. The fabricated 12-core fibers based on the simulation results realized Aeff of 80 μm2 and crosstalk less than −40 dB at 1550 nm after 100-km propagation. The MCF with the number of core larger than seven and the small crosstalk was demonstrated for the first time.

© 2012 OSA

1. Introduction

Space division multiplexing (SDM) is expected as a breakthrough technology against capacity crunch of optical transmission system over a single-mode fiber. Multicore fibers (MCFs) have been developed for a transmission fiber of SDM system [1

1. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.

9

9. K. Imamura, H. Inaba, K. Mukasa, and R. Sugizaki, “Multi core fiber with large Aeff of 140 μm2 and low crosstalk,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.2.

] and the results of transmission experiments had been reported [3

3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011). [CrossRef] [PubMed]

,7

7. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signal at 305 Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.

,10

10. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20(9), 10100–10105 (2012). [CrossRef] [PubMed]

12

12. H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takashima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First demonstration of MC-EDFA-repeatered SDM transmission of 40x128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.3.

]. Almost all the reported MCFs were seven cores with hexagonal close-packed structure (HCPS). The recently reported 19-core fiber was also based on the HCPS [7

7. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signal at 305 Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.

]. The HCPS has some issues on effective crosstalk [3

3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011). [CrossRef] [PubMed]

] and flexibility of the numbers of cores [5

5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]

]. In addition, the trench-assisted structure, which is recognized as an indispensable technique to suppress inter-core crosstalk, causes another issue on the control of cutoff wavelength [1

1. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.

,4

4. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011). [CrossRef] [PubMed]

]. We have proposed a two-pitch structure (TPS) as a solution for these issues [5

5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]

,6

6. Y. Sasaki, K. Takenaga, Y. Arakawa, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled 10-core fiber with two-pitch layout,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.4.

].

Recently, the transmission experiment with the record capacity of 1.01-Pb/s over a 12-core fiber has been reported [11

11. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.1.

]. The 12-core fiber employed novel core arrangement called one-ring structure (ORS). In this paper, the characteristics of the ORS-MCF are presented. After the explanation of the feature of the ORS, the optimization of the ORS by the numerical simulation is presented. The simulation results are confirmed by the characteristics of fabricated ORS-MCFs with 12 cores.

2. Feature of one-ring structure

  • 1. Core pitch Λ limitation due to lengthening of cutoff wavelength (λc) of inner cores [1

    1. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.

    ,4

    4. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011). [CrossRef] [PubMed]

    ].
  • 2. Excessive crosstalk degradation of inner cores [3

    3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011). [CrossRef] [PubMed]

    ].
  • 3. Low flexibility of the number of cores [5

    5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]

    ].

The TPS is a solution for the second and the third issues. However, the pitch of TPS is still constrained by the cutoff wavelength of a center core [6

6. Y. Sasaki, K. Takenaga, Y. Arakawa, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled 10-core fiber with two-pitch layout,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.4.

].

ΔXT=XTworstXT.
(2)

Table 1

Table 1. ΔXT for various structures

table-icon
View This Table
| View All Tables
summarizes ΔXT of MCFs with various structures. The ΔXT of the HCPS ranges from 4.8 dB to 7.8 dB. In the case of TPS, The ΔXT of the inner core is 9.5 dB, which is largest value in Table 1. However, the 9.5-dB ΔXT is negligible because the XT between an inner core and an outer core is 30 dB smaller than that between outer cores [5

5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]

]. The ΔXT of the ORS is 3.0 dB for all cores. Accordingly, we can conclude that the ORS can overcome the second issue.

3. Simulation results

A trench-assisted structure shown in Fig. 3
Fig. 3 Schematic diagram of a trench-assisted structure.
was employed for the refractive index of core to suppress XT [1

1. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.

]. r2/r1 = 2.0, w/r1 = 1.2, Δ2 = 0% and Δ3 = −0.7%. Figures 4(a)
Fig. 4 Structural parameter dependence of Aeff, cutoff wavelength and Λ-50.: (a) Results on 80-μm2 Aeff range. (b) Results on 110-μm2 Aeff range.
and 4(b) represent the simulation results for different Aeff range: Fig. 4(a) shows 80-μm2 range and Fig. 4(b) shows 110-μm2 range. A cutoff wavelength (λc) was defined as the wavelength where the confinement loss of the LP11 mode was 1 dB/m. The effective cable cutoff wavelength of single-mode fibers is defined as the wavelength where the LP11 mode undergoes 19.3-dB attenuation after 22-m propagation [16

16. IEC Standard 60793–1-44, Measurement Methods and Test Procedures- Cutoff Wavelength (2011).

]. The LP11-mode confinement loss of 1 dB/m means that LP11 mode suffers 22-dB attenuation after 22-m propagation and is good indicator of the effective cutoff wavelength. Dashed lines and dotted lines are contour line of Aeff and λc, respectively. Colored solid lines represent core pitch Λ contour that realizes XT of −50 dB at 1550 nm after 100-km propagation, which XT is equivalent to XTworst of −47 dB for the ORS.

Figure 4(a) indicates that Λ of 36.5 μm is required to realize an ORS-MCF with Aeff of 80 μm2 and cutoff wavelength of 1530 nm. Figure 5
Fig. 5 Cladding diameter dependence of maximum number of cores for ORS and HCPS: λc = 1.53 μm, Aeff at 1550 nm = 80 μm2 and 100-km XTworst at 1550nm = −47 dB at bending radius of 155 mm. Cladding thickness Tc = 30 μm. Λ = 36.5 μm for ORS. Λ = 40 μm for HCPS.
shows the allowable number of cores for ORS and HCPS as a function of Dc, where XTworst = −47 dB. Λ = 36.5 μm for the ORS. Λ = 40 μm for the HCPS. Tc = 30 μm for both the structures. The ORS allows us to increase the number of cores according to allowed cladding diameter. We can arrange 12 cores in a cladding of 201-μm diameter by using the ORS. In the case of 12-core fiber, the core can also be arranged on a hexagon: six core on tops and six cores on the middle of sides. The Dc with hexagonal structure is 206 μm, which is slightly larger than that of circular structure and is still smaller than that of the 19-core HCPS. We can select an appropriate structure in consideration of fabrication process.

We can derive Λ of 41 μm for 100-km XT of −50 dB, Aeff of 110 μm2 and cutoff wavelength of 1530 nm from Fig. 4(b). 10 cores can be arranged in a cladding of 213-μm diameter including 40-μm Tc [4

4. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011). [CrossRef] [PubMed]

]. To achieve the same XTworst of −47 dB and Aeff of 100 μm2, Λ is 46.0 μm for HCPS [13

13. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett. 24(21), 1898–1901 (2012). [CrossRef]

] and 47.4 μm for TPS [5

5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]

]. Small core pitch design is allowed by using the ORS. The cladding diameter of 10-core TPS and 19-core HCPS are estimated to be 219 μm and 264 μm, respectively. The ORS is effective to realize large Aeff and low crosstalk MCF with comparatively small cladding diameter.

4. Measurement results of fabricated fibers

Figure 8
Fig. 8 The relationship between XTworst and the number of cores for SM-MCFs.
shows the relationship between 100-km XTworst and number of cores for single-mode MCFs(SM-MCFs) presented so far. The XTworst was estimated from reported XT with Eq. (1). The MCFs whose number of cores is larger than seven resulted in relatively large XTworst about −20 dB. The fabricated 12-core fibers with the ORS successfully increased the number of cores with the small XTworst of −40 dB at 1550 nm for the first time.

5. Conclusions

We have proposed a MCF whose cores are arranged on one ring. The characteristics of the proposed structure were theoretically analyzed and experimentally confirmed. The proposed MCF overcame three issues on the MCF with hexagonal close-packed structure. The simulation results indicated that the one-ring structure realizes 12-core fiber with Aeff of 80 μm2 and Dc of 201 μm and 10-core fiber with Aeff of 110 μm2 and Dc of 213 μm. We have fabricated 12-core fibers whose cores were arranged on a hexagon based on the simulation results. The fabricated 12-core fiber realized Aeff of 80 μm2 and 100-km worst crosstalk less than −40 dB at 1550 nm.

Acknowledgments

The authors would like to thank Dr. H.Takara, Dr. A. Sano, Dr. H. Kubota, Dr. H. Kawakami, Dr. A. Matsuura, Dr. Y. Miyamoto, Dr. Y. Abe, Dr. H. Ono, Dr. K. Shikama, Dr. Y. Goto, and Dr. K. Tsujikawa of NTT Corporation and Prof. Morioka of Technical University of Denmark for helpful discussion and their encouragement. This work was partially supported by National Institute of Information and Communication Technology (NICT), Japan under “Research on Innovative Optical fiber Technology”.

References and links

1.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.

2.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011). [CrossRef] [PubMed]

3.

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011). [CrossRef] [PubMed]

4.

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011). [CrossRef] [PubMed]

5.

S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett. 36(23), 4626–4628 (2011). [CrossRef] [PubMed]

6.

Y. Sasaki, K. Takenaga, Y. Arakawa, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled 10-core fiber with two-pitch layout,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.4.

7.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signal at 305 Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.

8.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.3.

9.

K. Imamura, H. Inaba, K. Mukasa, and R. Sugizaki, “Multi core fiber with large Aeff of 140 μm2 and low crosstalk,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.2.

10.

H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20(9), 10100–10105 (2012). [CrossRef] [PubMed]

11.

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.1.

12.

H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takashima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First demonstration of MC-EDFA-repeatered SDM transmission of 40x128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.3.

13.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett. 24(21), 1898–1901 (2012). [CrossRef]

14.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]

15.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J. 4(5), 1987–1995 (2012). [CrossRef]

16.

IEC Standard 60793–1-44, Measurement Methods and Test Procedures- Cutoff Wavelength (2011).

17.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 22, 2012
Revised Manuscript: November 20, 2012
Manuscript Accepted: November 28, 2012
Published: December 6, 2012

Citation
Shoichiro Matsuo, Yusuke Sasaki, Tsuyoshi Akamatsu, Itaru Ishida, Katsuhiro Takenaga, Kazuhiro Okuyama, Kunimasa Saitoh, and Masanori Kosihba, "12-core fiber with one ring structure for extremely large capacity transmission," Opt. Express 20, 28398-28408 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28398


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ4.
  2. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011). [CrossRef] [PubMed]
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express19(17), 16665–16671 (2011). [CrossRef] [PubMed]
  4. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011). [CrossRef] [PubMed]
  5. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, “Large-effective-area ten-core fiber with cladding diameter of about 200 μm,” Opt. Lett.36(23), 4626–4628 (2011). [CrossRef] [PubMed]
  6. Y. Sasaki, K. Takenaga, Y. Arakawa, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “Large-effective-area uncoupled 10-core fiber with two-pitch layout,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OM2D.4.
  7. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signal at 305 Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper PDP5C.1.
  8. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.3.
  9. K. Imamura, H. Inaba, K. Mukasa, and R. Sugizaki, “Multi core fiber with large Aeff of 140 μm2 and low crosstalk,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Mo.1.F.2.
  10. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express20(9), 10100–10105 (2012). [CrossRef] [PubMed]
  11. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.1.
  12. H. Takahashi, T. Tsuritani, E. L. T. de Gabory, T. Ito, W. R. Peng, K. Igarashi, K. Takashima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “First demonstration of MC-EDFA-repeatered SDM transmission of 40x128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), paper Th.3.C.3.
  13. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multi-core fibers,” IEEE Photon. Technol. Lett.24(21), 1898–1901 (2012). [CrossRef]
  14. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002). [CrossRef]
  15. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012). [CrossRef]
  16. IEC Standard 60793–1-44, Measurement Methods and Test Procedures- Cutoff Wavelength (2011).
  17. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. on Commun,” E94-B(2), 409–416 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited