OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28792–28800
« Show journal navigation

Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling

Arun Kumar Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, J. Paul Armstrong, and Jay W. Dawson  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28792-28800 (2012)
http://dx.doi.org/10.1364/OE.20.028792


View Full Text Article

Acrobat PDF (1845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rectangular-core (ribbon) fiber that guides and amplifies a single higher-order-mode (HOM) can potentially scale to much higher average powers than what is possible in traditional circular-core large-mode-area fibers. Such an amplifier would require mode-conversion at the input to enable interfacing with seed sources that typically output TEM00 mode radiation and at the output to generate diffraction-limited radiation for end-user applications. We present the first simulation and experimental results of a mode conversion technique that uses two diffractive-optic-elements in conjugate Fourier planes to convert a diffraction limited TEM00 mode to the HOM of a ribbon fiber. Mode-conversion-efficiency is approximately 84% and can theoretically approach 100%. We also demonstrate a mode-converter system that converts a single HOM of a ribbon fiber back to a diffraction-limited TEM00 mode. Conversion efficiency is a record 80.5%.

© 2012 OSA

1. Introduction

Scalable, high average power lasers are needed for materials processing and defense systems. Scientific applications such as laser-based guide stars for astronomy, gravitational wave detection, coherent remote wind sensing and laser based particle acceleration could also benefit from high average power lasers with diffraction-limited output radiation. Considerable attention has been focused on fiber-based lasers and amplifiers due to their potential for high average power combined with high beam quality and efficiency, compactness, and reliability [1

1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, 681–693 (2005). [CrossRef]

].

Ytterbium doped fiber lasers and amplifiers at 1 μm have recently made tremendous progress and have been scaled to the multi-kW average power level with diffraction-limited beam quality. These systems are based on large-mode-area (LMA) step-index and photonic crystal (PC) based fiber amplifiers. The typical approach to power scaling in these fiber amplifiers is to increase the core size in each successive amplifier stage (while reducing the numerical aperture to maintain single-moded radiation), since the thresholds of nonlinearities and facet-damage increase with increasing mode-field-diameter (MFD).

We have theoretically analyzed the limits to power scaling of these fiber amplifiers by considering thermal, non-linear, damage and pump coupling limits as well as the fiber’s MFD limitations [2

2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008). [CrossRef] [PubMed]

]. Our analysis shows that if the fiber’s MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, based on practical considerations for the fiber amplifier’s bend diameter, we have also found that there is a practical limit to the achievable mode size - and that for this MFD there is an optimum fiber length that results in a laser whose maximum output power is 10-20 kW with good beam quality [2

2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008). [CrossRef] [PubMed]

]. This is the physical limit to scaling the power of conventional fiber lasers.

Our models show that by moving from circularly-symmetric waveguides to ribbon-like rectangular-core fiber waveguides [3

3. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B 19, 1521–1534 (2002). [CrossRef]

] as in Fig. 1, the single aperture power limit can be raised from 10 - 20 kW to > 100 kW.

Fig. 1 A magnified image of sample ribbon fiber’s facet.

The ribbon fiber waveguide has a rectangular core with a high width-to-height aspect ratio. This waveguide is single-moded in the thin dimension (y) and multi-moded in the wide dimension (x). The fiber is coiled only in the y-direction. Since higher-order-modes (HOM) are less susceptible to bend loss and mode mixing [4

4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008). [CrossRef]

], we choose to propagate a particular HOM (in the x direction) in the ribbon fiber. By selective excitation of the desired HOM [5

5. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt. 51, 84–88 (2012). [CrossRef] [PubMed]

] and prevention of coiling in the x-direction, it is possible to minimize excitation of other HOMs in the ribbon fiber. Further, the area of the waveguide and the mode’s effective area can then be scaled by simply increasing the waveguide width. These ribbon fiber amplifiers can thus guide a higher order mode with a larger effective area and therefore generate much higher output power than is possible in circular-core fibers.

Since most seed lasers output TEM00 radiation, mode conversion is required to launch this radiation into the ribbon fiber’s HOM. Similarly, since many applications require diffraction-limited radiation, the ribbon fiber’s output HOM radiation needs to be converted back to the TEM00 mode. Mode conversion has recently been accomplished for circularly-symmetric laser outputs via interferometric elements [6

6. A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element,” Opt. Lett. 28, 504–506 (2003). [CrossRef] [PubMed]

] and mode coupling in dual-core PC fibers [7

7. M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt. 10, 115304–115307 (2008). [CrossRef]

]. However, these tend to be quite complex or inefficient as the mode number is increased. Another conversion approach based on diffractive optical elements (DOEs) has been implemented for a number of years, for example, to transform the annular beam of CO2 lasers [8

8. N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett. 61, 381–383 (1992). [CrossRef]

] to a uniform spatial amplitude profile, albeit with non-flat phase.

In this field, Siegman, early on showed that for any near-field electric field profile with a purely real wave front but with regions of positive and negative sign, a single DOE in the form of a binary phase plate cannot improve beam quality as measured by the M2 criterion [9

9. A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett. 18, 675–677 (1993). [CrossRef] [PubMed]

]. The resulting far-field profiles have energy in the side-lobes and that results in no change to the M2. Subsequently it has been shown that a single DOE (phase plate) [10

10. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt. 46, 5147–5157 (2007). [CrossRef] [PubMed]

] and a continuous phase plate [11

11. R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000). [CrossRef]

]- both when combined with spatial filters can improve the beam quality of a laser operating in a single higher-order-mode. However, in these approaches, the conversion efficiency suffers, as energy in the side-lobes is rejected.

In this paper, we demonstrate a mode-converter system that efficiently converts TEM00 radiation to the ribbon-fiber’s HOM and vice versa. Our work builds on mode-converter approaches that use two DOEs for coherent beam combining of phase locked arrays of VCSELS [12

12. G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements:concept and experimental verification,” Appl. Opt. 42, 1667–1680 (2003). [CrossRef] [PubMed]

] and sparse laser arrays [13

13. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett. 33, 2377–2379 (2008). [CrossRef] [PubMed]

]. The approach taken by the Leger group [13

13. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett. 33, 2377–2379 (2008). [CrossRef] [PubMed]

] is especially promising because it offers the potential for nearly 100% theoretical beam combination efficiency. We propose to apply this scheme (which utilizes two phase plates - placed in two conjugate Fourier planes) in the context of mode-conversion to generate the ribbon fiber’s HOM. In Section II, we discuss mode-conversion between a TEM00 mode input to a HOM of the ribbon fiber. In Section III, we describe mode-conversion between a HOM of the ribbon fiber and the TEM00 mode. In Section IV we summarize and describe potential applications for our work.

2. Conversion from TEM00 to HOM

2.1. Description of approach

Any mode converter that converts a TEM00 mode to the multi-lobed higher-order-mode of a ribbon fiber needs to redistribute the energy from the gaussian profile to multiple-lobes and make the phase across the profile flip between 0 and π. Accomplishing these two tasks necessitates two diffractive-optic-elements (i.e. phase-only plates, one for each task) as illustrated in Fig. 2.

Fig. 2 Illustration of the mode-conversion scheme to convert a TEM00 mode to the 7th eigen-mode of a rectangular-core fiber.

2.2. Modeling

For the purposes of simulation and experiments we use a sample (7th) HOM of a ribbon fiber (i.e. a rectangular 5 μm × 50 μm silica core with 0.1 NA and circular cladding) which has 7 lobes along the width of the core. The phase of each lobe is 0 or π. Since the waveguide is single moded in the y direction, in this dimension the eigenmode can be transformed to the appropriate size using cylindrical lenses. Using the GS algorithm in 1-D, we calculate the phase profiles of the two DOEs that transform a diffraction-limited gaussian profile to the ribbon-fiber’s HOM.

Figure 3 shows the input and target mode profiles that are fed into the GS algorithm as well as the retrieved phases on DOE 1 and 2. DOE 1 has a phase-excursion that spans approximately 1.5 waves. It steers and reshapes the gaussian profile to achieve multiple-lobes in the plane of DOE 2. DOE 2 makes the field’s phase profile flip between 0 and π. The GS algorithm is iterative and for each iteration, it produces a convergence metric corresponding to the normalized overlap integral between the constraint and evolving amplitude. In our numerical implementation of the GS algorithm, this convergence metric peaks at nearly 97%.

Fig. 3 (a) Input mode’s amplitude (b) Target 7-lobed mode’s amplitude (c) DOE 1 phase profile (d) DOE 2 phase profile

2.3. Experimental demonstration

Figure 4 shows an experimental layout of the mode-converter system which uses two diffractive optic elements implemented with phase-only spatial light modulators (SLM). Figure 3 shows the phases impressed upon the inputs to the two computer-controlled SLMs (Boulder Nonlinear Systems, Model: P512-1064). The test-laser’s output is collimated and magnified to a size that is appropriate for incidence on the first SLM. The diffracted output is picked-off by using a right-angle-prism and imaged onto the second SLM. The diffracted output of SLM-2 is again picked-off with another prism. The resulting far and near field intensities are measured using a standard CCD camera (Gentec E-O, Model: Beamage CCD12).

Fig. 4 Experimental setup of the mode-converter system which uses two spatial light modulators as diffractive optic elements to impress the correct phase onto the propagating mode.

Figure 5 shows the experimental results which depict the far-field and near-field intensities after SLM-2 measured in the two Fourier planes. We first calculate the respective field amplitudes by taking the square root of the measured intensities. The far-field amplitude (like the intensity) is two lobed since it is the Fourier transform of near-field amplitude with lobes whose phase is nominally-manipulated by SLM-2 to alternate between 0 and π. To verify that the phases indeed alternate between 0 and π and calculate the mode-conversion efficiency, we use these amplitudes and the GS algorithm to retrieve the corresponding phases in the two Fourier planes.

Fig. 5 Camera images of the intensities after SLM-2: (a) in the far-field and (b) in the near-field. Corresponding intensity-profiles in the (c) far-field and (d) near-field, are also shown.

The retrieved phases are shown in Fig. 6. The 7-lobed mode’s electric field profile is calculated using the amplitude (calculated from measured intensity) and retrieved phase. The overlap integral of this field with the theoretical electric-field profile for the ribbon fiber’s 7th eigenmode is 84%. The conversion efficiency is limited to a certain extent because of the inaccuracy in determining the exact location of the Fourier-planes and the convergence of the GS algorithm. Pixelization also results in high-frequency ripples in the near-field and a reduction in conversion efficiency with respect to the value of 97% predicted by our-model.

Fig. 6 Electric field amplitudes and retrieved phases corresponding to the experimentally measured intensity profiles (Fig. 5) in the (a) far-field of SLM-2 and (b) near-field after SLM-2

3. Conversion from HOM to TEM00 mode

3.1. Description of approach and setup

In this section, we present results for a mode-converter system that converts the ribbon fiber’s HOM output back to the TEM00 mode. Figure 7 illustrates the experimental setup that again utilizes two phase plates - placed in two conjugate Fourier planes - at the output of the fiber.

Fig. 7 Experimental schematic of the mode-converter system which uses two diffractive optic elements.

For test purposes, we use a low-power, single-frequency laser for high-angle excitation (albeit inefficiently) of the 7th HOM of the ribbon fiber. This fiber has a rectangular 5 μm × 50 μm silica core with 0.1 NA and circular cladding. The phase of each of 7 lobes is 0 or π. The fiber’s output is magnified before impinging upon the first SLM. The diffracted output is picked-off by using a right-angle-prism and imaged onto the second SLM. The first SLM redistributes the energy from the multiple-lobes to a gaussian profile at the plane of the second SLM. The second SLM makes the phase across the profile uniform. Its output is again picked-off with another prism. The resulting far field intensity is measured using a standard CCD camera. The power in the central-lobe is measured by placing a power-meter behind a appropriately sized slit.

3.2. Modeling

To calculate the required phase profiles, we feed the GS algorithm with an image of the 7-lobed mode at the input to SLM-1 and that of the desired TEM00 mode at SLM-2. With the retrieved phase profiles in the two planes, we calculate the SLM-1 and SLM-2 profiles. The GS algorithm is iterative and for each iteration, it produces an error signal corresponding to the difference in intensities between the constraint and evolving amplitude. We were unable to drive the error signal to nearly zero in our numerical model calculations. As a result, the retrieved phases and calculated SLM profiles have some degree of inaccuracy in them. To compensate for these errors, we choose to keep the phase on SLM-1 constant and implement a genetic algorithm (GA) [15

15. G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization design of diffractive optical elements,” Appl. Opt. 38, 4281–4290 (1999). [CrossRef]

] that evolves the phase profile on SLM-2 until the power through the slit in the far-field of SLM-2 is maximized. Figure 8 shows the resulting phase profiles that are implemented on SLM-1 and SLM-2.

Fig. 8 Phase profiles of (a) SLM-1 (b) and SLM-2.

3.3. Experimental demonstration

Figure 9 shows the resulting intensity profiles at the input of SLM-2 and the far-field of SLM-2. We see that the intensity profile at SLM-2 has a number of ripples and does not represent an ideal TEM00 amplitude profile. In the laboratory, we notice that the amplitude of these ripples are time-varying as well. We attribute this to the following two reasons:
  1. The ribbon-fiber’s output consists potentially of a time-varying interference of the fiber’s eigenmodes. Our calculations suggest that the fraction of light in the 7th eigen-mode is around 85% or better. However, beating between this mode and other excited modes in the ribbon fiber could result in a time-varying phase at the input to SLM-1 and create time-varying ripples in the intensity profile measured at SLM-2.
  2. Large phase jumps across pixels in SLM-1 due to phase wrapping could also cause ripples in the intensity at the input to SLM-2.

Fig. 9 Camera images at the (a) input of SLM-2 (c) and its far-field. Corresponding intensity-profiles are shown in (b) and (d).

As a test, we implemented a GA on SLM-1 so as to optimize it better for achieving a smoother TEM00 amplitude profile at SLM-2. This effort was partially successful, in that we were able to reduce, but not eliminate, the magnitude of the intensity ripples at SLM-2. However, the GA-optimized SLM-1 phase had much higher magnitude-and-frequency phase transitions between pixels. Implementing this GA-optimized phase on SLM1, which has pixelation that causes the phase error to depend on the magnitude of the phase transitions between pixels, results in approximately 30% of the energy being thrown outside (i.e. outside the 4 times the 1/e2 half-width) of the Gaussian profile at SLM-2.

As a result of this experiment, we decided to retain the GS-derived phase on SLM-1 and implemented the GA-optimized phase on SLM-2. The phase errors in the TEM00-like profile at SLM-2 are largely corrected and a smooth TEM00 mode is generated after passing through a slit in the far-field. By taking the ratio of the incident and transmitted powers through the slit, we estimate that the measured conversion efficiency is 80%. The beam-quality of the mode passing through the slits is nearly diffraction-limited and its Mx2=1.27 and My2=1.07.

In contrast, when we used the GS-derived phase on SLM-1 and SLM-2, we were only able to achieve about 65% conversion efficiency into the TEM00 mode in the far-field of SLM-2. Our calculations suggest that given the 15 μm pixels on SLM-2 and the beam-size at SLM-2, the conversion efficiency will be limited to approximately 82% due to lack of spatial resolution. The measured conversion-efficiency can be improved to the 90–95% level by expanding the beam-size at SLM-2 so that that residual phase error after SLM-2 is minimized. Further improvements towards the 100% level should be possible by generating a more-pure HOM in the ribbon-fiber and modifying the phase impressed by SLM-1 to generate a smoother amplitude profile at SLM-2.

4. Summary

In summary, we have discussed the design, simulation, and experimental results of a mode converter that takes the TEM00 mode output of a seed 1053 nm laser and converts it to the HOM of rectangular-core ribbon fibers. The DOE’s phase properties are derived by using the Gerchberg-Saxton algorithm. Phase retrieval and overlap efficiency calculations based on experimental measurement of the intensities in the fiber-facet’s near and far-fields show that the mode conversion efficiency is approximately 84%. We have also demonstrated mode-conversion between the HOM and TEM00 modes with a nearly-identical setup with 80% efficiency. Our analysis suggests that the conversion-efficiency can be improved to the 90-95% level. These results represent a key contribution in the technology of mode-converters based on phase-only modulation in the near and far-fields of the source for power scaling of ribbon fiber lasers and amplifiers.

As an extension, the mode-conversion technique described here can be applied to the output modes of a broad-class of slab, rod, and other gas lasers. Many side-pumped rod-based solid-state lasers have a significant amount of pump absorption along the edges of the crystal. Resonator designs that emphasize good beam quality output often leave a lot of the stored energy behind since the TEM00 mode doesn’t overlap as well with the pump absorption profile. Operating the resonator in a higher-order ”doughnut” mode might improve the overlap and extraction efficiency. This might increase the gain threshold for unwanted parasitic oscillations as well. In the end, it may turn out that mode-converters for some of these laser systems might benefit from some combination [16

16. J. M. Herrera-Fernandez and L. M. Sanchez-Brea, “Double diffractive optical element system for near-field shaping,” Appl. Opt. 50, 4587–4593 (2011). [CrossRef] [PubMed]

] of amplitude and phase modulation.

Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors would like to thank another colleague, Graham Scott Allen, for useful discussions during the course of this work.

References and links

1.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, 681–693 (2005). [CrossRef]

2.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008). [CrossRef] [PubMed]

3.

R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B 19, 1521–1534 (2002). [CrossRef]

4.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448 (2008). [CrossRef]

5.

A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt. 51, 84–88 (2012). [CrossRef] [PubMed]

6.

A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element,” Opt. Lett. 28, 504–506 (2003). [CrossRef] [PubMed]

7.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt. 10, 115304–115307 (2008). [CrossRef]

8.

N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett. 61, 381–383 (1992). [CrossRef]

9.

A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett. 18, 675–677 (1993). [CrossRef] [PubMed]

10.

N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt. 46, 5147–5157 (2007). [CrossRef] [PubMed]

11.

R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000). [CrossRef]

12.

G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements:concept and experimental verification,” Appl. Opt. 42, 1667–1680 (2003). [CrossRef] [PubMed]

13.

M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett. 33, 2377–2379 (2008). [CrossRef] [PubMed]

14.

J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]

15.

G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization design of diffractive optical elements,” Appl. Opt. 38, 4281–4290 (1999). [CrossRef]

16.

J. M. Herrera-Fernandez and L. M. Sanchez-Brea, “Double diffractive optical element system for near-field shaping,” Appl. Opt. 50, 4587–4593 (2011). [CrossRef] [PubMed]

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2400) Fiber optics and optical communications : Fiber properties
(100.3190) Image processing : Inverse problems
(060.3510) Fiber optics and optical communications : Lasers, fiber
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 27, 2012
Manuscript Accepted: October 1, 2012
Published: December 12, 2012

Citation
Arun Kumar Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, J. Paul Armstrong, and Jay W. Dawson, "Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling," Opt. Express 20, 28792-28800 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38, 681–693 (2005). [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16, 13240–13266 (2008). [CrossRef] [PubMed]
  3. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B19, 1521–1534 (2002). [CrossRef]
  4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.2, 429–448 (2008). [CrossRef]
  5. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt.51, 84–88 (2012). [CrossRef] [PubMed]
  6. A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly gaussian beam by use of a single interferometric element,” Opt. Lett.28, 504–506 (2003). [CrossRef] [PubMed]
  7. M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” Journal of Optics A: Pure and Appl. Opt.10, 115304–115307 (2008). [CrossRef]
  8. N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett.61, 381–383 (1992). [CrossRef]
  9. A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett.18, 675–677 (1993). [CrossRef] [PubMed]
  10. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.46, 5147–5157 (2007). [CrossRef] [PubMed]
  11. R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett.25, 939–941 (2000). [CrossRef]
  12. G. Hergenhan, B. Lucke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements:concept and experimental verification,” Appl. Opt.42, 1667–1680 (2003). [CrossRef] [PubMed]
  13. M. Khajavikhan, A. Hoyer-Leitzel, and J. R. Leger, “Efficient conversion of light from sparse laser arrays into single-lobed far field using phase structures,” Opt. Lett.33, 2377–2379 (2008). [CrossRef] [PubMed]
  14. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  15. G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization design of diffractive optical elements,” Appl. Opt.38, 4281–4290 (1999). [CrossRef]
  16. J. M. Herrera-Fernandez and L. M. Sanchez-Brea, “Double diffractive optical element system for near-field shaping,” Appl. Opt.50, 4587–4593 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited