OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29518–29523
« Show journal navigation

1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror

Hee-Won Yang, Chur Kim, Sun Young Choi, Guang-Hoon Kim, Yohei Kobayashi, Fabian Rotermund, and Jungwon Kim  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29518-29523 (2012)
http://dx.doi.org/10.1364/OE.20.029518


View Full Text Article

Acrobat PDF (1728 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a 1.2-GHz repetition rate, diode-pumped, self-starting, 168-fs (FWHM) pulsewidth Yb:KYW laser mode-locked by a carbon nanotube (CNT) saturable absorber mirror. To our knowledge, this result corresponds to the highest repetition rate from CNT-mode-locked femtosecond bulk solid-state lasers, reaching the GHz regime for the first time.

© 2012 OSA

1. Introduction

High repetition-rate (e.g., >1 GHz) femtosecond mode-locked lasers are highly desirable for various applications such as frequency combs [1

1. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]

], astro-combs [2

2. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]

, 3

3. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]

], high-speed optical sampling and photonic analog-to-digital converters [4

4. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012). [CrossRef] [PubMed]

], remote timing transfer and synchronization [5

5. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008). [CrossRef]

] and multi-photon microscopy [6

6. A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007). [CrossRef]

]. Diode-pumped high repetition-rate solid-state lasers have been considered as an attractive approach due to their lower cost (by using a diode laser for pumping) and easiness in repetition rate scaling (by reducing the free-space section in the cavity). In particular, Yb-doped potassium tungstate gain media, such as Yb:KYW and Yb:KGW, can provide stable, broadband and tunable outputs at useful 1-μm wavelength range when pumped by 980 nm diode lasers. As a result, various types of GHz repetition-rate Yb:KYW and Yb:KGW lasers have recently been demonstrated, most notably by Kerr-lens mode-locking (KLM) [7

7. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20(11), 12191–12197 (2012). [CrossRef] [PubMed]

, 8

8. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009). [CrossRef] [PubMed]

] and by semiconductor saturable absorber mirror (SESAM)-based mode-locking [9

9. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35(5), 748–750 (2010). [CrossRef] [PubMed]

11

11. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012). [CrossRef] [PubMed]

]. In order to build more long-term stable and lower-cost Yb-doped potassium tungstate lasers, a single-walled carbon nanotube saturable absorber (SWCNT-SA) [12

12. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009). [CrossRef]

, 13

13. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010). [CrossRef]

] can be employed. For fiber lasers, CNT-SA-mode-locked Er:Yb-co-doped fiber lasers with ~20 GHz repetition rate and sub-ps pulse duration have recently been demonstrated [14

14. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). [CrossRef] [PubMed]

]. However, most of SWCNT-SA-based femtosecond solid-state bulk lasers have been demonstrated for <100 MHz repetition rate [15

15. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 microm,” Opt. Express 17(22), 20109–20116 (2009). [CrossRef] [PubMed]

18

18. K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett. 32(1), 38–40 (2007). [CrossRef] [PubMed]

], with the highest repetition rate of 194 MHz from a Nd:BaY2F8 gain medium (also note that the pulse duration of this laser was actually in the picosecond range (8 ps)) [19

19. A. Agnesi, L. Carra, F. Pizrio, G. Reali, A. Toncelli, M. Tonelli, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Diode-pumped Nd:BaY2F8 picosecond laser mode-locked with carbon nanotube saturable absorbers,” J. Opt. Soc. Am. B 27(12), 2739–2742 (2010). [CrossRef]

].

In this paper, we demonstrate a 1.2-GHz repetition rate, diode-pumped, self-starting, SWCNT-SA-mode-locked Yb:KYW laser with 168 fs full-width half maximum (FWHM) pulse duration and 8 nm FWHM optical bandwidth at 1047 nm center wavelength. To our knowledge, this corresponds to the highest repetition rate obtained from SWCNT-SA-mode-locked femtosecond bulk solid-state lasers, reaching the GHz regime for the first time. Beyond the specific Yb:KYW gain medium, this result shows the potential of diode-pumped, CNT-mode-locked solid-state lasers for robust, low-cost, and GHz repetition-rate femtosecond lasers.

2. Experimental setup

3. Measurement results

Figure 2(a)
Fig. 2 (a) The average output power of the Yb:KYW laser versus input pump power. The dashed black line shows the threshold of the mode-locking operation. (b) Measured beam profile of the mode-locked Yb:KYW laser output at 430 mm distance from the output coupler (ellipticity = 0.97).
shows the relationship between the pump power and the average output power of the Yb:KYW laser. The pumping threshold for mode-locking is measured to be 547 mW. The resulting energy fluence on the SWCNT-SA is ~302 μJ/cm2 in this condition, which is ~30 times of the SWCNT-SA saturation fluence. A stable, broadband mode-locked operation is obtained at 743 mW pumping power, which results in 47 mW output power from the 0.3% output coupler. The optical-to-optical efficiency is 8.6% at 743 mW pump power and the slope efficiency is 6.3%. Note that the efficiency is lower than recently demonstrated SESAM-mode-locked Yb:KYW(KGW) lasers [10

10. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett. 37(6), 1133–1135 (2012). [CrossRef] [PubMed]

, 11

11. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012). [CrossRef] [PubMed]

] mainly due to the relatively large non-saturable loss of the SWCNT-SA (~1%). Figure 2(b) shows the far-field beam profile (at 430 mm distance from the output coupler) of the mode-locked laser output, which shows the ellipticity of 0.97. The measured M2 for x-axis and y-axis are 1.3 and 1.2, respectively.

Figure 3(a)
Fig. 3 (a) Measured output optical spectrum. The FWHM bandwidth is 8.0 nm at 1047 nm center wavelength. (b) Measured output interferometric autocorrelation (IAC) trace (168 fs FWHM pulse duration when fitted to the sech2 shape).
shows the measured output optical spectrum. The FWHM optical bandwidth is 8.0 nm at 1047 nm center wavelength, which corresponds to 144 fs transform-limited FWHM pulse duration. Figure 3(b) shows the measured interferometric autocorrelation (IAC) trace of the output pulses. The measured FWHM pulse duration is 168 fs when fitting the measured IAC trace to the ideal IAC of a sech2-pulse shape. The measured pulse duration is 17% longer than the ideal transform-limited pulse duration (144 fs).

Figure 4(a)
Fig. 4 (a) Measured RF spectrum with 100 kHz resolution bandwidth and 5 GHz span. (b) Measured RF spectrum with 1 kHz resolution bandwidth and 1 MHz span. (c) Measured RIN spectrum from 10 Hz to 10 MHz offset frequency (integrated RIN of 0.27% rms). (d) Measured output power stability (0.63% rms).
shows the measured RF spectrum with a 100 kHz resolution bandwidth and 5 GHz span. The measured fundamental repetition rate is 1.17 GHz, and clean single-pulse continuous wave mode-locked operation is observed without spurious frequency components or modulations over the entire 5 GHz span. Note that when a 1 kHz resolution bandwidth is used for narrower RF span, the measured extinction ratio is well above 80 dB (as shown in Fig. 4(b)). We also measured the relative intensity noise (RIN) to assess the intensity noise in the low (<10 MHz) offset frequency (as shown in Fig. 4(c)). The rms RIN is 0.27% when integrated from 10 Hz to 10 MHz offset frequency. The long-term output power stability is 0.63% (rms) measured over 1000 s (as shown in Fig. 4(d)).

4. Conclusion

We developed a 1.2-GHz repetition rate, diode-pumped, self-starting, SWCNT-SA-mode-locked Yb:KYW laser with 168 fs FWHM pulse duration. To our knowledge, this result corresponds to the highest repetition rate demonstrated from SWCNT-SA-mode-locked femtosecond bulk solid-state lasers, reaching the GHz regime for the first time. Beyond the specific Yb:KYW gain medium, this result shows the potential of diode-pumped, CNT-mode-locked solid-state lasers for robust, low-cost, and GHz repetition-rate femtosecond lasers. As a future work, we will scale the repetition rate of SWCNT-SA-mode-locked laser into the multi-GHz regime [7

7. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20(11), 12191–12197 (2012). [CrossRef] [PubMed]

, 11

11. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012). [CrossRef] [PubMed]

] by employing a transmission-type SWCNT-SA [21

21. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Stenmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008). [CrossRef]

] in a ring cavity structure. Note that the efficiency and output power are currently limited by the non-saturable loss of the SWCNT-SA (~1%) and the available pump power from a 980-nm diode laser (~750 mW). To improve the efficiency and output power, we will investigate the feasibility of reducing the non-saturable loss of the SWCNT-SA, employing additional pump diodes from both sides of curved mirrors, and finding the optimal output coupling ratio. The demonstrated GHz SWCNT-SA-mode-locked Yb:KYW laser may serve as a useful seed source for various applications such as frequency metrology, optical sampling, and multi-photon microscopy in the near future.

Acknowledgment

This work was supported by the National Research Foundation (NRF) of Korea (2010-0003974 and 2012R1A2A2A01005544). G.-H.K. acknowledges support from the Seoul Metropolitan Government of South Korea (WR100001). S.Y.C. and F.R. acknowledge supports from the National Research Foundation (NRF) of South Korea (2011-0017494 and 2012-0000608).

References and links

1.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]

2.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]

3.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]

4.

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012). [CrossRef] [PubMed]

5.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008). [CrossRef]

6.

A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys. 102(1), 014701 (2007). [CrossRef]

7.

M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20(11), 12191–12197 (2012). [CrossRef] [PubMed]

8.

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009). [CrossRef] [PubMed]

9.

S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35(5), 748–750 (2010). [CrossRef] [PubMed]

10.

T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett. 37(6), 1133–1135 (2012). [CrossRef] [PubMed]

11.

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012). [CrossRef] [PubMed]

12.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.) 21(38–39), 3874–3899 (2009). [CrossRef]

13.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010). [CrossRef]

14.

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). [CrossRef] [PubMed]

15.

A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 microm,” Opt. Express 17(22), 20109–20116 (2009). [CrossRef] [PubMed]

16.

I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D.-I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express 19(8), 7833–7838 (2011). [CrossRef] [PubMed]

17.

W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009). [CrossRef] [PubMed]

18.

K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett. 32(1), 38–40 (2007). [CrossRef] [PubMed]

19.

A. Agnesi, L. Carra, F. Pizrio, G. Reali, A. Toncelli, M. Tonelli, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Diode-pumped Nd:BaY2F8 picosecond laser mode-locked with carbon nanotube saturable absorbers,” J. Opt. Soc. Am. B 27(12), 2739–2742 (2010). [CrossRef]

20.

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett. 20(1), 16–18 (1995). [CrossRef] [PubMed]

21.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Stenmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008). [CrossRef]

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 18, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 11, 2012
Published: December 19, 2012

Citation
Hee-Won Yang, Chur Kim, Sun Young Choi, Guang-Hoon Kim, Yohei Kobayashi, Fabian Rotermund, and Jungwon Kim, "1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror," Opt. Express 20, 29518-29523 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  2. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  3. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser Frequency Combs for Astronomical Observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  4. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express20(4), 4454–4469 (2012). [CrossRef] [PubMed]
  5. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008). [CrossRef]
  6. A. Ehlers, I. Riemann, S. Martin, R. Le Harzic, A. Bartels, C. Janke, and K. König, “High (1GHz) repetition rate compact femtosecond laser: A powerful multiphoton tool for nanomedicine and nanobiotechnology,” J. Appl. Phys.102(1), 014701 (2007). [CrossRef]
  7. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express20(11), 12191–12197 (2012). [CrossRef] [PubMed]
  8. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express17(7), 5630–5635 (2009). [CrossRef] [PubMed]
  9. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010). [CrossRef] [PubMed]
  10. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett.37(6), 1133–1135 (2012). [CrossRef] [PubMed]
  11. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012). [CrossRef] [PubMed]
  12. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009). [CrossRef]
  13. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater.20(12), 1937–1943 (2010). [CrossRef]
  14. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011). [CrossRef] [PubMed]
  15. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 microm,” Opt. Express17(22), 20109–20116 (2009). [CrossRef] [PubMed]
  16. I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D.-I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express19(8), 7833–7838 (2011). [CrossRef] [PubMed]
  17. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express17(13), 11007–11012 (2009). [CrossRef] [PubMed]
  18. K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett.32(1), 38–40 (2007). [CrossRef] [PubMed]
  19. A. Agnesi, L. Carra, F. Pizrio, G. Reali, A. Toncelli, M. Tonelli, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, “Diode-pumped Nd:BaY2F8 picosecond laser mode-locked with carbon nanotube saturable absorbers,” J. Opt. Soc. Am. B27(12), 2739–2742 (2010). [CrossRef]
  20. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995). [CrossRef] [PubMed]
  21. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Stenmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett.93(16), 161106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited