OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 1969–1974
« Show journal navigation

Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing

Yingying Ren, Ningning Dong, John Macdonald, Feng Chen, Huaijin Zhang, and Ajoy K. Kar  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 1969-1974 (2012)
http://dx.doi.org/10.1364/OE.20.001969


View Full Text Article

Acrobat PDF (1659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Buried channel waveguides in Nd:LuVO4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

© 2012 OSA

1. Introduction

Neodymium doped vanadate crystals, including yttrium vanadate (Nd:YVO4), gadolinium vanadate (Nd:GdVO4), and lutetium vanadate (Nd:LuVO4), etc., are considered as favorite gain media for solid state lasers owing to their large emission cross-section, high absorption and high thermal conductivity [1

1. A. Agnesi, A. Guandalini, and G. Reali, “Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 19(5), 1078–1082 (2002). [CrossRef]

8

8. S. R. Zhao, H. J. Zhang, J. Y. Wang, H. K. Kong, X. F. Cheng, J. H. Liu, J. Li, Y. T. Lin, X. B. Hu, X. G. Xu, X. Q. Wang, Z. S. Shao, and M. H. Jiang, “Growth and characterization of the new laser crystal Nd:LuVO4,” Opt. Mater. 26(3), 319–325 (2004). [CrossRef]

]. For example, Nd:YVO4 has become the mostly widely used working medium for the green laser pointers in the hybrid “Nd:YVO4 + KTiOPO4” intracavity self frequency doubling system. Among the vanadate family, Nd:LuVO4 is a new member, which was successfully grown, for the first time, by Maunier et al. in 2002 [5

5. C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002). [CrossRef]

]. The absorption cross section σabs at 808 nm for Nd:LuVO4 (0.04 at.%), Nd:YVO4(0.4 at.%) and Nd:GdVO4 (1.2 at.%) are reported to be 69 × 10−20 cm2, 57 × 10−20 cm2 and 52 × 10−20 cm2, respectively, whilst the emission cross section σem at ~1064 nm are determined to be 146 × 10−20 cm2, 135 × 10−20 cm2 and 76 × 10−20 cm2, respectively [5

5. C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002). [CrossRef]

9

9. X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-Wave Dual-Wavelength Operation of a Diode-End-Pumped Nd:LuVO4 Laser,” Laser Phys. 21(6), 1039–1041 (2011). [CrossRef]

], which prove that Nd:LuVO4 crystals possess even greater absorption and emission cross sections than those of conventional vanadate crystals. Meanwhile, Nd:LuVO4 laser operating at 1064 nm [8

8. S. R. Zhao, H. J. Zhang, J. Y. Wang, H. K. Kong, X. F. Cheng, J. H. Liu, J. Li, Y. T. Lin, X. B. Hu, X. G. Xu, X. Q. Wang, Z. S. Shao, and M. H. Jiang, “Growth and characterization of the new laser crystal Nd:LuVO4,” Opt. Mater. 26(3), 319–325 (2004). [CrossRef]

], 1343 nm [9

9. X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-Wave Dual-Wavelength Operation of a Diode-End-Pumped Nd:LuVO4 Laser,” Laser Phys. 21(6), 1039–1041 (2011). [CrossRef]

], 916 nm [10

10. C. Y. Zhang, L. Zhang, Z. Y. Wei, C. Zhang, Y. B. Long, Z. G. Zhang, H. Zhang, and J. Wang, “Diode-pumped continuous-wave Nd:LuVO4 laser operating at 916 nm,” Opt. Lett. 31(10), 1435–1437 (2006). [CrossRef] [PubMed]

], and 880 nm [11

11. B. Liu, Y. L. Li, and H. L. Jiang, “Nd:LuVO4 as a true three-level laser,” Laser Phys. Lett. 8(8), 575–578 (2011). [CrossRef]

] have been realized.

With respect to bulk geometry, the confinement of light in very small volumes through optical waveguides increases the light intensity to a great extend, resulting in the considerable improvement of some performances in the guiding structures [12

12. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]

, 13

13. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]

]. Waveguide lasers are expected to have relatively low lasing thresholds and comparable efficiencies with respect to their bulk counterparts. In addition, the compact size of the waveguide components offers possibility for further integration of various devices on a single chip to achieve multifunctional photonic applications. Although several techniques, such as oxygen ion implantation [14

14. C. L. Jia, X. L. Wang, K. M. Wang, and H. J. Zhang, “Characterization of optical waveguide in Nd:LuVO4 crystals by triple-energy oxygen ion implantation,” Physica B 403(4), 679–683 (2008). [CrossRef]

] and pulsed laser deposition [15

15. H. X. Li, J. Y. Wang, H. J. Zhang, G. W. Yua, X. X. Wang, L. Fang, M. R. Shen, Z. Y. Ning, Q. W. Tang, S. L. Li, X. L. Wang, and K. M. Wang, “Structural and optical properties of Nd:LuVO4 waveguides grown on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 277(1-4), 269–273 (2005). [CrossRef]

], have been utilized to fabricate optical waveguides in Nd:LuVO4, no laser oscillations were reported based on these waveguides.

Direct femtosecond (fs) laser writing has recently emerged as one of the most efficient techniques for three-dimensional (3D) volume microstructuring of transparent optical materials [16

16. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009). [CrossRef]

]. By focusing the fs laser pulses on selected positions inside the substrates, permanent refractive index changes, either in the irradiated region or in the surrounding area of modified region, are produced, in such a way that optical waveguides are fabricated. This technique has been proved to be an almost universal technique for waveguide writing in a wide range of transparent materials, including optical crystals [17

17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119 (2010). [CrossRef]

22

22. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011). [CrossRef] [PubMed]

], ceramics [23

23. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process. 104(1), 301–309 (2011). [CrossRef]

26

26. N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi 5, 184–186 (2011).

], glasses [27

27. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007). [CrossRef]

30

30. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011). [CrossRef] [PubMed]

], and polymers [31

31. W. Watanabe, S. Sowa, and K. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006). [CrossRef]

]. By using this method, buried channel waveguides have been produced in Nd:YVO4 and Nd:GdVO4 [17

17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119 (2010). [CrossRef]

19

19. Y. Tan, Y. Jia, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B 28(7), 1607–1610 (2011). [CrossRef]

]. As for Nd doped fs-laser written waveguide lasers, up to now, the highest efficiency (70% slope efficiency) was obtained in Nd:GdVO4 platform [18

18. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]

], and the maximum output power was 1.3W for Nd:YAG crystalline waveguides [21

21. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010). [CrossRef]

].

In this work, we focus on the fabrication of buried channel waveguides in Nd:LuVO4 crystal by using direct fs laser writing and the continuous wave (cw) laser actions in the waveguide.

2. Experiments in details

The Nd:LuVO4 (doped by 0.1 at.% Nd3+) crystal used in this work was grown by Czochralski method. It was optically polished and cut to dimensions of 2.5(x) × 5.7(y) × 4(z) mm3. The waveguides were produced by using the well-known “double line” technique. An IMRA μJewel mode-locked laser system, delivering pulses with a central wavelength of 1047 nm, pulse duration of 360 fs and repetition rate of 200 kHz, was employed to write waveguides in the crystal. The laser beam, with horizontal polarization, was focused 100 μm below the polished surface by an achromatic lens with a numerical aperture (NA) of 0.6. The sample, fixed onto an Aerotech 3D translation stage, was translated perpendicularly to the laser beam and parallel to the crystallographic y axis (see Fig. 1(a)
Fig. 1 (a) The experimental set-up for femtosecond laser writing experiments, and (b) the end-face microscope image of Nd:LuVO4 waveguide sample. The waveguide is located in the open dashed circular region.
) with a speed of 1 mm/s and 10 mm/s, respectively. Figure 1(a) shows the schematic diagram of the waveguide fabrication experimental setup. During the writing process, pairs of parallel tracks with separation distance of 25 μm were formed, one of which is shown in Fig. 1(a). The waveguide was therefore formed in the region between the two tracks due to the stress-induced refractive index changes. For the guiding properties and laser experiments discussed in this paper a waveguide was used, which was fabricated with an average power of 274 mW (corresponding to pulse energy of 1.4 μJ) and a sample translation speed of 10 mm/s. The cross-sections of the tracks are shown in Fig. 1(b).

The confocal micro-photoluminescence (μ-PL) properties were obtained by using an argon laser providing 10 mW cw radiations at 488 nm. An Olympus BX-41 fiber-coupled confocal microscope and an XY motorized stage with a spatial resolution of 100 nm were employed. The laser beam was focused into the sample by an oil immersion 100 × microscope objective with NA = 0.8, exciting the transition of Nd3+ ions through from the ground state 4I9/2 up to the 2G3/2 excited state. Then the Nd3+ fluorescence emission spectra corresponding to the 4F3/2 to 4I9/2 emission band was back-collected by the same microscope objective and analyzed on a high resolution spectrometer (SPEX500M). Three dimensional spectral maps including the emitted intensity, emission bandwidth, and energy position of the main fluorescence line were obtained by fitting the collected spectra and plotting the obtained values with the aid of software LabSpec© and WSMP©.

The waveguide laser experiment was performed by using a typical end-face coupling system. A cw Ti:sapphire laser (Coherent MBR 110) generating a linearly polarized beam at ~809 nm was employed as a pump source. A convex lens with a focal length of 25 mm was used to focus the pump light beam into the waveguide. The generated laser beam from the output facet was collected by a 20 × microscope objective. The laser oscillation was realized without any cavity mirrors (i.e., the laser cavity was formed directly by two polished facets of the sample). The transmittance of the crystal’s faces can be estimated from the refractive index of Nd:LuVO4 to be close to 90%. After being separated from the residual pump through a dichroic mirror with high reflection at around 808 nm and high transmission at about 1064 nm, the laser emission from the waveguide was detected by the spectrometer, CCD camera or powermeter.

3. Results and discussion

Figure 3(a)
Fig. 3 (a) The room temperature µ-PL emission spectra correlated to Nd3+ ions at 4F3/24I9/2 transition of the Nd:LuVO4 crystal; the 2D mappings of the (b) spatial dependence of the emitted intensity, (c) FWHM and (d) energy shift of the corresponding emission line of Nd3+ around 880 nm obtained from the channel waveguide; the 1D distribution of the (c) emitted intensity, (f) FWHM and (g) energy shift of the 880-nm line from the waveguide (corresponding to the regions indicated by dashed lines in the 2D mappings of (b), (c) and (d), respectively).
depicts a typical µ-PL emission spectrum corresponding to the 4F3/24I9/2 transition of the Nd3+ ions in Nd:LuVO4 crystal, which consists of a narrow and intense peak at 880.1 nm. In order to obtain the detailed modification of fluorescence properties, we focused on the 880.1 nm emission line and investigated the spatial distribution of the integrated intensity, full width at half maximum (FWHM) of the photoluminescence line and spectral shift in a wide area covering the modified and unmodified Nd:LuVO4 volumes. The results are displayed in Figs. 3(b), 3(c) and 3(d), respectively. Meanwhile, for easy visualization and comparison, Figs. 3(e), 3(f) and 3(g) depict the 1-D profiles corresponding to the position indicated by the dashed lines in Figs. 3(b), 3(c) and 3(d), respectively. As shown in Figs. 3(a) and 3(d), there is an obvious reduction in the luminescence intensity generated from the filaments volume, which can be attributed to the high density of lattice defects and imperfections in these areas. Similarly, a broadening of the luminescence line also reveals the presence of lattice defects and disorder in the filament area, which can be seen from Figs. 3(b) and 3(e). In addition, the emission line shifts to lower energies at the filament locations, see Figs. 3(c) and 3(f), which correspond to red shifts. It has been proved that red shifts of the µ-PL emission spectra are spatially coinciding with the lateral zones of filaments, and is aroused by the compressive stress [17

17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119 (2010). [CrossRef]

, 18

18. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]

, 24

24. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009). [CrossRef]

]. At the same time, from Figs. 3(a)-3(g), similar Nd3+ luminescence intensity, FWHM and peak position are observed in the waveguide volumes (between the two filaments) and the bulk of Nd:LuVO4 crystal, which, in general, means that the spectroscopic properties of the Nd3+ ions are well preserved in the waveguide so that the fabricated waveguide emerge as promising integrated laser element.

4. Summary

We have reported the fabrication of buried channel waveguides in Nd:LuVO4 by using femtosecond laser writing. Stable laser operation at 1066.4 nm has been realized with the lasing threshold power of 98 mW and the slope efficiency of 14%. The good laser performance suggests potential applications on construction of integrated laser devices in Nd:LuVO4.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (11111130200), and Royal Society international joint projects NSFC 2010 (JP 100985). The authors gratefully acknowledge financial support from the UK EPSR`C through grant EP/GO30227/1.

References and links

1.

A. Agnesi, A. Guandalini, and G. Reali, “Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 19(5), 1078–1082 (2002). [CrossRef]

2.

H. Ogilvy, M. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express 11(19), 2411–2415 (2003). [CrossRef] [PubMed]

3.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode umped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun. 205, 361–365 (2002).

4.

H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang, and Y. T. Chow, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19(1), 18–27 (2002). [CrossRef]

5.

C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002). [CrossRef]

6.

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49(11), 5517–5522 (1978). [CrossRef]

7.

T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic Characterization and Laser Performance of Diode-Laser-Pumped Nd:GdVO4,” Appl. Phys. B 58(5), 373–379 (1994). [CrossRef]

8.

S. R. Zhao, H. J. Zhang, J. Y. Wang, H. K. Kong, X. F. Cheng, J. H. Liu, J. Li, Y. T. Lin, X. B. Hu, X. G. Xu, X. Q. Wang, Z. S. Shao, and M. H. Jiang, “Growth and characterization of the new laser crystal Nd:LuVO4,” Opt. Mater. 26(3), 319–325 (2004). [CrossRef]

9.

X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-Wave Dual-Wavelength Operation of a Diode-End-Pumped Nd:LuVO4 Laser,” Laser Phys. 21(6), 1039–1041 (2011). [CrossRef]

10.

C. Y. Zhang, L. Zhang, Z. Y. Wei, C. Zhang, Y. B. Long, Z. G. Zhang, H. Zhang, and J. Wang, “Diode-pumped continuous-wave Nd:LuVO4 laser operating at 916 nm,” Opt. Lett. 31(10), 1435–1437 (2006). [CrossRef] [PubMed]

11.

B. Liu, Y. L. Li, and H. L. Jiang, “Nd:LuVO4 as a true three-level laser,” Laser Phys. Lett. 8(8), 575–578 (2011). [CrossRef]

12.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]

13.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998). [CrossRef]

14.

C. L. Jia, X. L. Wang, K. M. Wang, and H. J. Zhang, “Characterization of optical waveguide in Nd:LuVO4 crystals by triple-energy oxygen ion implantation,” Physica B 403(4), 679–683 (2008). [CrossRef]

15.

H. X. Li, J. Y. Wang, H. J. Zhang, G. W. Yua, X. X. Wang, L. Fang, M. R. Shen, Z. Y. Ning, Q. W. Tang, S. L. Li, X. L. Wang, and K. M. Wang, “Structural and optical properties of Nd:LuVO4 waveguides grown on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth 277(1-4), 269–273 (2005). [CrossRef]

16.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009). [CrossRef]

17.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119 (2010). [CrossRef]

18.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]

19.

Y. Tan, Y. Jia, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B 28(7), 1607–1610 (2011). [CrossRef]

20.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009). [CrossRef]

21.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010). [CrossRef]

22.

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011). [CrossRef] [PubMed]

23.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process. 104(1), 301–309 (2011). [CrossRef]

24.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009). [CrossRef]

25.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008). [CrossRef]

26.

N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi 5, 184–186 (2011).

27.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007). [CrossRef]

28.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008). [CrossRef] [PubMed]

29.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011). [CrossRef] [PubMed]

30.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19(9), 7929–7936 (2011). [CrossRef] [PubMed]

31.

W. Watanabe, S. Sowa, and K. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006). [CrossRef]

32.

C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express 19(13), 12503–12508 (2011). [CrossRef] [PubMed]

33.

Rsoft Design Group, Computer software BEAMPROP (http://www.rsoftdesign.com).

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(230.7380) Optical devices : Waveguides, channeled
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 8, 2012
Manuscript Accepted: January 9, 2012
Published: January 13, 2012

Citation
Yingying Ren, Ningning Dong, John Macdonald, Feng Chen, Huaijin Zhang, and Ajoy K. Kar, "Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing," Opt. Express 20, 1969-1974 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-1969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Agnesi, A. Guandalini, and G. Reali, “Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B19(5), 1078–1082 (2002). [CrossRef]
  2. H. Ogilvy, M. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express11(19), 2411–2415 (2003). [CrossRef] [PubMed]
  3. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode umped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun.205, 361–365 (2002).
  4. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang, and Y. T. Chow, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B19(1), 18–27 (2002). [CrossRef]
  5. C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B19(8), 1794–1800 (2002). [CrossRef]
  6. T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys.49(11), 5517–5522 (1978). [CrossRef]
  7. T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic Characterization and Laser Performance of Diode-Laser-Pumped Nd:GdVO4,” Appl. Phys. B58(5), 373–379 (1994). [CrossRef]
  8. S. R. Zhao, H. J. Zhang, J. Y. Wang, H. K. Kong, X. F. Cheng, J. H. Liu, J. Li, Y. T. Lin, X. B. Hu, X. G. Xu, X. Q. Wang, Z. S. Shao, and M. H. Jiang, “Growth and characterization of the new laser crystal Nd:LuVO4,” Opt. Mater.26(3), 319–325 (2004). [CrossRef]
  9. X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-Wave Dual-Wavelength Operation of a Diode-End-Pumped Nd:LuVO4 Laser,” Laser Phys.21(6), 1039–1041 (2011). [CrossRef]
  10. C. Y. Zhang, L. Zhang, Z. Y. Wei, C. Zhang, Y. B. Long, Z. G. Zhang, H. Zhang, and J. Wang, “Diode-pumped continuous-wave Nd:LuVO4 laser operating at 916 nm,” Opt. Lett.31(10), 1435–1437 (2006). [CrossRef] [PubMed]
  11. B. Liu, Y. L. Li, and H. L. Jiang, “Nd:LuVO4 as a true three-level laser,” Laser Phys. Lett.8(8), 575–578 (2011). [CrossRef]
  12. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  13. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B67(2), 131–150 (1998). [CrossRef]
  14. C. L. Jia, X. L. Wang, K. M. Wang, and H. J. Zhang, “Characterization of optical waveguide in Nd:LuVO4 crystals by triple-energy oxygen ion implantation,” Physica B403(4), 679–683 (2008). [CrossRef]
  15. H. X. Li, J. Y. Wang, H. J. Zhang, G. W. Yua, X. X. Wang, L. Fang, M. R. Shen, Z. Y. Ning, Q. W. Tang, S. L. Li, X. L. Wang, and K. M. Wang, “Structural and optical properties of Nd:LuVO4 waveguides grown on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth277(1-4), 269–273 (2005). [CrossRef]
  16. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009). [CrossRef]
  17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010). [CrossRef]
  18. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  19. Y. Tan, Y. Jia, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B28(7), 1607–1610 (2011). [CrossRef]
  20. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  21. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  22. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011). [CrossRef] [PubMed]
  23. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011). [CrossRef]
  24. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  25. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  26. N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5, 184–186 (2011).
  27. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007). [CrossRef]
  28. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16(24), 20029–20037 (2008). [CrossRef] [PubMed]
  29. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  30. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011). [CrossRef] [PubMed]
  31. W. Watanabe, S. Sowa, and K. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE6108, 61080R, 61080R-6 (2006). [CrossRef]
  32. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011). [CrossRef] [PubMed]
  33. Rsoft Design Group, Computer software BEAMPROP ( http://www.rsoftdesign.com ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited