OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2435–2444
« Show journal navigation

Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications

Jérémie Thomas, Mikhaël Myara, Laurent Troussellier, Ekaterina Burov, Alain Pastouret, David Boivin, Gilles Mélin, Olivier Gilard, Michel Sotom, and Philippe Signoret  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2435-2444 (2012)
http://dx.doi.org/10.1364/OE.20.002435


View Full Text Article

Acrobat PDF (1208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

© 2012 OSA

1. Introduction

These last years, the space industry has shown an increasing interest for photonics, as an enabling technology to address new satellite architectures and sub-system applications. The most attractive perspectives consist in taking benefit from the ground optical communication technology, as it offers a wide range of possibilities, which are of strong interest for both civilian and defense applications. In spite of past researches, this technology is still not yet ready for space, a major lock being the availability of the so-called EDFA “Erbium-Doped Fiber Amplifier”, which is strongly degraded by the harsh radiative space environment. It was clearly identified that the radiation-affected component of the EDFA is the Erbium-Doped Fiber (EDF) itself [1

1. D. Caplan, M. Stevens, and B. Robinson, “Free-space laser communications: global communications and beyond,” in European Conference on Optical Communication (2009).

]. Indeed, up to now, EDFs fabricated by state of art technology do not fulfill the requirements because the radiations produce a dramatic increase of the fiber background losses. These losses lead to huge gain reduction at the end-of-life of the EDF.

2. State of the art

The degradation of the EDFs, called “Radiation-Induced-Absorption” (RIA), is not due to the insertion of the Erbium ion itself in the host matrix, but to the addition of a significant amount of Aluminum as co-doping atom in classical fabrication processes. Unfortunately, whereas Aluminum facilitates the inclusion of the Erbium ions in the glass and reduces quenching effects, it also induces structural defects in the host matrix, resulting in strong RIA levels after irradiation [2

2. L. Troussellier, C. Chluda, M. Myara, J. Boch, L. Dusseau, P. Signoret, O. Gilard, M. Sotom, and J.-P. David, “Dose rate effect on aluminium-codoped erbium fibers,” in Radiation Effects on Insulators (2007).

, 3

3. H. Henschel, O. Köhn, H. U. Schmidt, J. Krichhof, and S. Unger, “Radiation-induced loss of rare earth doped silica fibres,” IEEE Trans. Nucl. Sci. 45(3), 1552–1557 (1998).

].

At this time, three main approaches have been explored to reduce the amplifier gain and optical power degradation originating from the RIA.

The first one consists in fabricating shorter amplifiers [4

4. A. Gusarov, M. V. Uffelen, M. Hotoleanu, M. Thienpont, and F. Berghmans, “Radiation Sensitivity of EDFAs Based on Highly Er-Doped Fibers,” J. Lightwave Technol. 27(11), 1540–1545 (2009).

]. Indeed, because the overall radiation induced losses grow as an exponential function of the amplifier fiber length, the first already visited way to reduce EDFA degradation has consisted in increasing Erbium concentration by means of conventional doping techniques, leading to huge concentrations of both Aluminum and Erbium. However, this approach is limited by the increase of Aluminum-induced RIA and / or by the quenching effect, which both impact optical gain and output power.

Another possibility consists in fiber hydrogenation, which is known to reduce the amount of traps in silica fibers. This way is very efficient regarding the achievable reduction of the RIA [5

5. B. Brichard, A. L. Tomashuk, V. A. Bogatyrjov, A. F. Fernandez, S. N. Klyamkin, S. Girard, and F. Berghmans, “Reduction of the radiation-induced absorption in hydrogenated pure silica core fibres irradiated in situ with gamma-rays,” J. Non-Cryst. Solids 353, 466–472 (2007).

]. Unfortunately, it is very well known that the hydrogen reaction with the silica defects leads to the formation of hydroxyl group (OH) and sometimes hydrides (SiH). The OH overtones and combinational vibration in silica glass introduce the peak absorption in IR region. So, its impact to the background losses depends on the wavelength and it is therefore difficult to predict the resulting attenuation spectrum ; typically, 1 ppm of formed OH induces 40 dB/km of losses at 1385 nm and 1 dB/km at 940 nm [6

6. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

, 7

7. E. Modone and G. Roba, “OH reduction in preforms by isotope exchange,” Electron. Lett. 17(21), 815–817 (1981).

]. The resulting attenuation at both pump and signal wavelengths will obviously impact the maximum achievable gain or output power. Therefore, following this way, a tricky compromise between RIA reduction and background losses has to be reached in order to build high performance optical amplifiers that may fulfill space applications requirements.

A last well-known possible hardening possibility relies on the inclusion of Cerium in the silica matrix [8

8. B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22(6), 2462 –2467 (1975).

], as Cerium acts as a hole trap. However, whereas strong RIA reduction can be attained at signal wavelength [9

9. M. Vivona, S. Girard, C. Marcandella, E. Pinsard, A. Laurent, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, “Durcissement aux radiations de fibres optiques dopées terres rares et d’amplificateurs à fibres optiques,” in Journées Nationales d’Optique Guidée (2010).

], the insufficient RIA lowering at pump wavelength leads to complex Er-Yb double cladding optical fiber design, resulting in huge transparency power, thus to poor optical efficiency. Whereas such a fiber is suitable for specific high optical power applications, it cannot meet most satellite application requirements, in which power consumption is a key parameter.

In this paper, we explore another EDF-hardening concept that, contrary to the aforementioned approaches, is based on the accurate physical origin of standard EDFs excessive degradation ; indeed, like it has been done in the past with passive optical fibers, we look into the possibility to reduce the co-doping atoms concentration. In the frame of this work, we thus explore the opportunity to reduce Aluminum concentration in the EDFs, while increasing the Erbium quantity in order to design shorter amplifiers.

Unfortunately, following this way by means of classical fabrication techniques inherently leads to massive quenching effects that dramatically reduce the EDF efficiency [10

10. P. Myslinski, “Effects of concentration on the performance of Erbium-Doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).

]. For this reason, the fabrication of such an EDF relies on disruptive technologies concerning the inclusion of the Erbium in the silica glass, allowing to reduce or eliminate the Aluminum proportion while controlling the Erbium ions close neighborhood in order to minimize quenching effects [11

11. D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc. SPIE , 7580, 75802B–1 (2010).

].

In this paper, we take advantage of the glass nanostructuration to fabricate such optical fibers by means of silica or alumina Erbium-doped nanoparticles (NP) which are inserted in the glass matrix. We then compare their resistance to radiations with various EDFs fabricated by classical process, thanks to EDFA configurations and irradiation conditions chosen to approach space requirements.

3. Nanoparticles-doped radiation-resistant EDFs design and fabrication

3.1. Fabrication of NP-doped EDF by MCVD

In this work, we take advantage of NP doping process [12

12. A. Pastouret, C. Gonnet, and E. Burov, “Amplifying optical fiber and production method,” (2010). Patent US 2010135627.

14

14. E. Régnier, A. Pastouret, and E. Burov, “Ionizing radiation-resistant optical fiber amplifier,” (2010). Patent US2010142033.

] to manufacture rare earth doped fibers, allowing an accurate control of the rare earth doping characteristics (incorporation, dispersion, chemical environment) within the fiber core matrix. Rare earth doped NPs synthesized by soft chemical way are put in the frame of stable aqueous suspension and incorporated within optical preform through a classical liquid doping technique, whatever the chosen main core glass matrix composition.

In the context of radiation insensitive fibers, manufacturing Er-doped fibers without Al-doping (SiO2/Er NPs) or with the minimal Al quantity (Al2O3/Er NPs) is now possible by involving NP doping technology. The Al2O3/Er NPs exhibit a determined atomic ratio Al/Er = 200, ensuring the WDM gain shape. In this case, a high Er content in the fiber can be reached thanks to a further optimization of doping porous layer capacity. Moreover, the NP process is interesting in an industrial context because it allows to perform a nanostructuration of the glass while being compatible with traditional MCVD fabrication process (Fig. 1).

Fig. 1 Fabrication Process steps for nanoparticules erbium-doped fibers.

3.2. EDFs and EDFAs under test

In order to check the degradation of the EDFs, we built for each fiber a co-propagative EDFA configuration with 21 to 23 dBm pump power at 980 nm and 0 dBm 1550-nm signal power at the fiber under test input (Fig. 2). Each amplifier is simply designed by choosing the so-called “optimal EDF length”, that allows to reach before irradiation the highest output power at signal wavelength for fixed pump and signal input powers. These EDFA configurations are sufficiently similar to compare the post-irradiation results in terms of gain or output power reduction. The Erbium-doped fibers explored in this work are designed and chosen to demonstrate many points, such as the influence of Aluminum concentration and amplifier length, but also the benefits of the Erbium neighborhood control permitted by NP-CVD. All the fibers under test are described in the following :
  • the “Al-NB” fiber, obtained by classical fabrication process, contains much lower Aluminum than standard EDFs, leading to a Narrower Bandwidth (NB). However, this fiber exhibits an Erbium concentration close to the one of standard EDF.
  • the “Al-LB” fiber is also obtained by classical fabrication process while including much higher Erbium level and containing an Aluminum concentration similar to standard EDF. It permits to build an amplifier shorter than if we used standard EDF.
  • the “NP-Al” fiber is a hugely Erbium-doped fiber that takes advantage of NP CVD process. The nanoparticles here are Erbium-doped Alumina NPs. Thanks to this technology, the Erbium concentration is much higher than the one of the “Al-LB” while we slightly reduced the amount of Aluminum (see Table 1). This design is attractive because a short amplifier with lower RIA can be designed by this way.
  • the “NP-Si” fiber is a first generation pure silica NP CVD optical fiber. The Erbium was inserted in the host matrix by means of pure-silica Erbium-Doped NPs. Thanks to this process, we can reach Aluminum-free Erbium-doped fiber with low quenching effect, because the close neighborhood of the Erbium is controlled by the silica encapsulation provided by the NPs. Indeed, in spite of the lack of Aluminum, the output power with an optimal-length amplifier is close to the output power reached with standard EDF, such as Al-NB or Al-LB in this paper. This demonstrates that the Erbium proportion involved in a quenching process is small [11

    11. D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc. SPIE , 7580, 75802B–1 (2010).

    ]. However, this fiber does not benefit of the Aluminum codoping, and exhibits a small Erbium concentration, leading to long length amplifiers.
  • the “NP-Si+” is the second generation of the aforementioned “NP-Si” fiber, including a higher Erbium proportion and reaching concentration levels not so far to the ones of standard EDF.

Fig. 2 Irradiation set-up.

The main parameters and properties of both EDF and EDFAs before irradiation are summed-up in Table 1.

Table 1. EDFs and Associated EDFA Parameters

table-icon
View This Table

4. Irradiation experiments, results and discussions

4.1. Irradiation set-up

As displayed in Fig. 2, the experimental set-up is made of two distinct parts:
  • the instruments area: this place contains a co-propagative pump configuration with 2 lasers, one at the signal wavelength (1550 nm) and the other one at the pump wavelength (980 nm). After the MUX, each laser light passes through an HI1060-Flexcore optical switch exhibiting transmittance fluctuations smaller than 0.2dB. The EDFA configurations are tested in amplification saturation regime with 0dBm input signal power and pump power exhibited in table 1 (both are to be considered at the point labeled “Input Power” in Fig. 2), whereas the RIA is tested far below the absorption saturation power. In order to reach high accuracy Noise Factor measurements, the signal laser is an Extended-Cavity Diode Laser (ECDL), which exhibits much lower Amplified Spontaneous Emission (ASE) levels than conventional DFB laser diodes. Moreover, this laser is used at the highest available power, which allows to reach a better rejection of the ASE, relatively to the laser line power ; the optical power at the input of the fiber at the signal wavelength is then adjusted thanks to an optical attenuator.
  • the gamma-irradiation facility: because the nature of radiation (X-rays, gamma, protons, electrons. . .) does not strongly influence the degradation [15

    15. S. Girard, B. Tortech, E. Régnier, M. V. Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J.-P. Meunier, F. Berghmans, J. R. Schwank, M. R. Shaneyflet, J. A. Felix, E. Blackmore, and H. Thienpont, “Proton and gamma-induced effects on erbium-doped optical Fibers,” IEEE Trans. Nucl. Sci. 54(6), 2426–2434 (2007).

    ], we simply performed gamma irradiation of all the 5 optical amplifiers. Fibers “Al-NB”, “Al-LB” and “NP-Si” were irradiated at ONERA in Toulouse (France) by means of 60Co source 5Gy/h, and both the “NP-Al” and “NP-Si+” were irradiated at Louvain-la-Neuve University in Belgium, still using a 60Co source, but in the 12Gy/h–14Gy/h dose rate range.

All the EDFA measurements were performed “in-line”. The coils of Er-doped fibers are linked to the instruments thanks to a set of 30 m-long HI1060 Flexcore optical fibers. The degradation of these passive optical fiber extensions can be ignored, as the RIA of passive fibers never exceeds some tens of dB/km [16

16. E. Régnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Radiation-induced attenuation at IR wavelength in silica based optical fibers,” in Radiation Effects on Components and Systems (2006).

] in the near to mid infrared range. This point was confirmed by post-irradiation transmittance measurements of the HI1060 Flexcore extensions.

We also have to discuss whether the results obtained at different dose rates can be compared or not. Indeed, it is well known that the dose rate influences the degradation of most Erbium-Doped Fibers [17

17. J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sotom, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fbers,” in International Conference on Space Optics (2010).

,18

18. B. Brichard, A. F. Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effet in erbium-doped fibers for space gyroscopes,” in Proc. of the 16th International Conference on Optical Fiber Sensors (2003).

]. However, the RIA variation regarding the dose rate (δRIA/δḊ) in the 3Gy/h–15Gy/h range is extremely low. This can be demonstrated using the RIA results displayed in Fig. 3. We reported the dose-normalized RIA for all the measurements that we performed on all the fibers. We interpolated the results at 5Gy/h for both NP-Al and NP-Si+. The variation of transmittance between the high-dose-rate results and the interpolated result is lower than 0.5dB at 400Gy for optimal-length size fiber samples, which is small compared to the RIA-induced fiber degradation. We thus can consider that all our fibers were irradiated in similar conditions and that the results can be compared.

Fig. 3 Dose-normalized RIA versus the dose-rate for each tested fiber at 1550nm.

We have also to notice that the results exhibited here are pessimistic, compared to real-space mission conditions, because each fiber was illuminated only during each data acquisition and not continuously during the whole irradiation experiments. The impact of the photobleaching is thus not taken into account in this work, and the only possible recovery may come from the room-temperature.

4.2. In-line output-power measurements under radiation

The output power decrease monitored inline for each EDFA is displayed in Fig. 4 as a function of the dose. These results clearly demonstrate the benefits obtained thanks to the NP CVD process. Our discussion describes two opposite ways, concerning the balance between low RIA and short amplifier length :
  • following first the “ultimately low RIA Erbium-doped fiber” way to reach radiation-resistant amplifiers, the result displayed in Fig. 4 is clear: the most radiation-resistant EDFA uses the less Aluminum-doped fiber with a quite short optimal length. To our knowledge, this compromise can only be obtained thanks to the NP CVD process. Indeed, reaching similar Erbium concentration with classical fabrication process requires a quite small part of Aluminum which is enough to induce a gain decrease by many dB.
  • Concerning the “short-length high Erbium-concentration” radiation-resistant amplifier way, we demonstrate, once more, that NP CVD fibers are much more interesting than classically fabricated fibers. Indeed, the results obtained with “NP-Al” and “Al-LB” clearly show that, at comparable Aluminum concentration, a much stronger resistance to radiations can be obtained.

Fig. 4 Optical Power decrease for each EDFA configuration.

We also notice that comparing fibers “NP-Si+” and “NP-Si” corroborates the design rule from A. Gusarov et al. [4

4. A. Gusarov, M. V. Uffelen, M. Hotoleanu, M. Thienpont, and F. Berghmans, “Radiation Sensitivity of EDFAs Based on Highly Er-Doped Fibers,” J. Lightwave Technol. 27(11), 1540–1545 (2009).

], bringing to the fore that fabricating shorter-length optical-amplifiers leads to radiation-resistant EDFA. However, this rule is to be weighted with the value of the RIA. Indeed, the “short amplifier” design rule fits well with both “NP-Si+” and “NP-Si”, whereas it cannot work between “NP-Si”, “NP-Al” and “Al-NB”, because of very different RIA values. Actually, whereas “NP-Al” allows to reach very short optimal-length amplifier (down to 2.5m), both “Al-NB” and “NP-Si” based EDFA exhibit similar or better resistance to radiations, while being more than 10 times longer.

4.3. Irradiated EDFA optimal length

It is clear that the degradation of the EDFA is due to the increase of the RIA. However, measuring simply the degradation at the output of an EDFA which optimal length is determined before irradiation is pessimistic, because the RIA acts like a strong increase of the background losses of the amplifier, which also induces a change in the EDFA optimal length once it is irradiated. In order to investigate this point, we performed cut-back operations on non-irradiated and 1300 Gy irradiated amplifiers in order to follow the evolution of the optimal length. The results of this work are displayed in Fig. 5 for a highly degraded (NP-Al) and slightly degraded (NP-Si+) optical fibers.

Fig. 5 Pre- and post- irradiation cut-back measurements performed for “NP-Si+” and “NP-Al” fibers.

This plot shows that the optimal length reduction is quite small (< 20%) for the slightly degraded fiber, whereas it reaches nearly 80% for the Aluminum co-doped fiber, leading to huge absorption at the fiber end. Moreover, we see in Fig. 5(a) that the maximal power post-irradiation at signal wavelength is obtained for ≈ 0.5m fiber length and is ≈ 18dB stronger than the power reached at the end of the fiber, i.e. at the pre-irradiation optimal length. For that reason, the optimal length of a radiation-resistant optical amplifier may be choosen considering the post-irradiation optimal length instead of the pre-irradiation optimal length.

This optimal length variation can be explained taking in account the fact that RIA is more impacted at 980nm than at 1550nm by the defects. This impact strongly depends on the nature of the doping atoms, especially from Aluminum contents. This leads to two degradation regimes for the EDFA as a function of the dose:
  • as long as the degradation at pump wavelength is not too strong, the optimal length does not change significantly as a function of the deposited dose, and thus so does the output power, as shown in Fig. 5(b).
  • however, once the degradation at pump wavelength is strong, the population inversion cannot be maintained over the whole fibre length (see Fig. 5(a)) and the amplifier reaches a strong absorption regime.

4.4. Pre- and post-irradiation noise factor

For these measurements, we take advantage of a low ASE External Cavity Diode Laser (ECDL). The Noise Factor was measured for both “NP-Si+” and “NP-Al” EDFA by using the ASE interpolation technique [19

19. D. Derickson, Fiber optic test and measurements, ed. (Prentice-Hall, 1998).

] and then calculated following the IEC (International Electrotechnical Commission) definition [20

20. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154 (2000).

], considering the signal-ASE beat as the main noise contribution in the EDFA :
NF=2ρASEhνG
(1)
ρASE is the amplified spontaneous emission spectral density (in W/Hz), and G the amplifier optical gain. We have to notice that the shot-noise contribution (+1/G) can be neglected in the NF calculation because the optical gain is still strong enough for each optical fiber after the 400Gy irradiation. The results are summed-up in Fig. 6.

Fig. 6 Signal + ASE spectra and noise factor evolution as a function of the dose deposit. The spectra were obtained at 1nm resolution bandwidth (RBW).

First of all, we observe that the Noise Factor (NF) exhibited by the amplifiers designed thanks to these two fibers is much stronger than the usual performances of commercial amplifiers, that usually reach NF values lower than 5 dB. Our NF values originate from many factors in the amplifier design, such as the single-stage topology, the single channel signal configuration, and the optical components that we used. Indeed, it is well known that the NF strongly depends on ASE reflections, which occur, in our case, at the optical switches at both sides of the EDFs under test, as shown in Fig. 2. For these reasons, the NF values we demonstrate are very pessimistic. However, the evolution of the NF as a function of the dose can be qualitatively studied.

Moreover, due to the lack of Aluminum, the ASE spectrum of the NP-Si+ fiber does not take advantage of the Aluminum-induced inhomogeneous broadening of the emission cross sections (Fig. 6(a) and (b)). For this erbium-doped pure-silica-nanoparticules fiber, the ASE power is thus concentrated over a narrower spectral range than the one of an Aluminum codoped fiber. For that reason, the pure silica ASE optical power spectral density (PSD) is stronger, and this impacts the noise factor value. That’s what is observed in Fig. 6-c. Nevertheless, we have to notice that, at this time, the NP-Si+ fiber design has not still been optimized to reduce the Noise Factor. We also notice that, even if the NP-Si+ NF is stronger by 1.5 dB than the one of NP-Al before irradiation, the degradation exhibits a smaller slope in Fig. 6-c, leading to a NF difference lower than 1dB after a 400Gy deposit dose between the fibers.

Moreover, the displayed NF degradation is, once more, a pessimistic result because the fibers did not experience any optical recovery.

5. Conclusion

In this work, we compared the radiation-resistance performances of 5 EDFs having different chemical compositions and fabricated thanks to both classical and NP CVD fabrication processes. We measured on the one hand the optical gain and noise factor in a saturated amplifier configuration, and on the other hand the RIA for both pump and signal wavelengths, in a small-signal regime. These measurements were carried out in-line, under 60Co gamma radiation. We also performed cut-back measurements, before and after degradation.

The strongest gain-degradation is observed for the amplifier using the “standard” technology-based fiber with the highest Aluminum concentration, while the lowest gain-degradation, and also the lowest RIA levels, are noticed for the silica nano-particles based fibers, with no trace of Aluminum. Therefore, this work demonstrates for the first time the feasibility of radiation-resistant single-channel EDFA designed for space applications. This work also allows to determine an order of magnitude of the fundamental limits of the degradation permitted with an erbium-doped pure-silica-nanoparticules fiber.

In order to target multiple-channel or low noise applications, these fibers must be enhanced concerning the inhomogeneous broadening. This can be performed by means of slight inclusion of Aluminum into the pure-silica Erbium-doped NPs, while using a minimal hydrogenation process in order to compensate the RIA.

References and links

1.

D. Caplan, M. Stevens, and B. Robinson, “Free-space laser communications: global communications and beyond,” in European Conference on Optical Communication (2009).

2.

L. Troussellier, C. Chluda, M. Myara, J. Boch, L. Dusseau, P. Signoret, O. Gilard, M. Sotom, and J.-P. David, “Dose rate effect on aluminium-codoped erbium fibers,” in Radiation Effects on Insulators (2007).

3.

H. Henschel, O. Köhn, H. U. Schmidt, J. Krichhof, and S. Unger, “Radiation-induced loss of rare earth doped silica fibres,” IEEE Trans. Nucl. Sci. 45(3), 1552–1557 (1998).

4.

A. Gusarov, M. V. Uffelen, M. Hotoleanu, M. Thienpont, and F. Berghmans, “Radiation Sensitivity of EDFAs Based on Highly Er-Doped Fibers,” J. Lightwave Technol. 27(11), 1540–1545 (2009).

5.

B. Brichard, A. L. Tomashuk, V. A. Bogatyrjov, A. F. Fernandez, S. N. Klyamkin, S. Girard, and F. Berghmans, “Reduction of the radiation-induced absorption in hydrogenated pure silica core fibres irradiated in situ with gamma-rays,” J. Non-Cryst. Solids 353, 466–472 (2007).

6.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).

7.

E. Modone and G. Roba, “OH reduction in preforms by isotope exchange,” Electron. Lett. 17(21), 815–817 (1981).

8.

B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci. 22(6), 2462 –2467 (1975).

9.

M. Vivona, S. Girard, C. Marcandella, E. Pinsard, A. Laurent, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, “Durcissement aux radiations de fibres optiques dopées terres rares et d’amplificateurs à fibres optiques,” in Journées Nationales d’Optique Guidée (2010).

10.

P. Myslinski, “Effects of concentration on the performance of Erbium-Doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).

11.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc. SPIE , 7580, 75802B–1 (2010).

12.

A. Pastouret, C. Gonnet, and E. Burov, “Amplifying optical fiber and production method,” (2010). Patent US 2010135627.

13.

A. Pastouret, E. Burov, D. Boivin, C. Collet, and O. Cavani, “Amplifying optical fiber and method of manufacturing,” (2010). Patent US 2010118388.

14.

E. Régnier, A. Pastouret, and E. Burov, “Ionizing radiation-resistant optical fiber amplifier,” (2010). Patent US2010142033.

15.

S. Girard, B. Tortech, E. Régnier, M. V. Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J.-P. Meunier, F. Berghmans, J. R. Schwank, M. R. Shaneyflet, J. A. Felix, E. Blackmore, and H. Thienpont, “Proton and gamma-induced effects on erbium-doped optical Fibers,” IEEE Trans. Nucl. Sci. 54(6), 2426–2434 (2007).

16.

E. Régnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Radiation-induced attenuation at IR wavelength in silica based optical fibers,” in Radiation Effects on Components and Systems (2006).

17.

J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sotom, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fbers,” in International Conference on Space Optics (2010).

18.

B. Brichard, A. F. Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effet in erbium-doped fibers for space gyroscopes,” in Proc. of the 16th International Conference on Optical Fiber Sensors (2003).

19.

D. Derickson, Fiber optic test and measurements, ed. (Prentice-Hall, 1998).

20.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154 (2000).

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(350.5610) Other areas of optics : Radiation
(350.6090) Other areas of optics : Space optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 11, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: January 4, 2012
Published: January 19, 2012

Citation
Jérémie Thomas, Mikhaël Myara, Laurent Troussellier, Ekaterina Burov, Alain Pastouret, David Boivin, Gilles Mélin, Olivier Gilard, Michel Sotom, and Philippe Signoret, "Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications," Opt. Express 20, 2435-2444 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2435


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Caplan, M. Stevens, and B. Robinson, “Free-space laser communications: global communications and beyond,” in European Conference on Optical Communication (2009).
  2. L. Troussellier, C. Chluda, M. Myara, J. Boch, L. Dusseau, P. Signoret, O. Gilard, M. Sotom, and J.-P. David, “Dose rate effect on aluminium-codoped erbium fibers,” in Radiation Effects on Insulators (2007).
  3. H. Henschel, O. Köhn, H. U. Schmidt, J. Krichhof, and S. Unger, “Radiation-induced loss of rare earth doped silica fibres,” IEEE Trans. Nucl. Sci.45(3), 1552–1557 (1998).
  4. A. Gusarov, M. V. Uffelen, M. Hotoleanu, M. Thienpont, and F. Berghmans, “Radiation Sensitivity of EDFAs Based on Highly Er-Doped Fibers,” J. Lightwave Technol.27(11), 1540–1545 (2009).
  5. B. Brichard, A. L. Tomashuk, V. A. Bogatyrjov, A. F. Fernandez, S. N. Klyamkin, S. Girard, and F. Berghmans, “Reduction of the radiation-induced absorption in hydrogenated pure silica core fibres irradiated in situ with gamma-rays,” J. Non-Cryst. Solids353, 466–472 (2007).
  6. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
  7. E. Modone and G. Roba, “OH reduction in preforms by isotope exchange,” Electron. Lett.17(21), 815–817 (1981).
  8. B. D. Evans and G. H. Sigel, “Radiation resistant fiber optic materials and waveguides,” IEEE Trans. Nucl. Sci.22(6), 2462 –2467 (1975).
  9. M. Vivona, S. Girard, C. Marcandella, E. Pinsard, A. Laurent, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, “Durcissement aux radiations de fibres optiques dopées terres rares et d’amplificateurs à fibres optiques,” in Journées Nationales d’Optique Guidée (2010).
  10. P. Myslinski, “Effects of concentration on the performance of Erbium-Doped fiber amplifiers,” J. Lightwave Technol.15(1), 112–120 (1997).
  11. D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc. SPIE, 7580, 75802B–1 (2010).
  12. A. Pastouret, C. Gonnet, and E. Burov, “Amplifying optical fiber and production method,” (2010). Patent US 2010135627.
  13. A. Pastouret, E. Burov, D. Boivin, C. Collet, and O. Cavani, “Amplifying optical fiber and method of manufacturing,” (2010). Patent US 2010118388.
  14. E. Régnier, A. Pastouret, and E. Burov, “Ionizing radiation-resistant optical fiber amplifier,” (2010). Patent US2010142033.
  15. S. Girard, B. Tortech, E. Régnier, M. V. Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter, J.-P. Meunier, F. Berghmans, J. R. Schwank, M. R. Shaneyflet, J. A. Felix, E. Blackmore, and H. Thienpont, “Proton and gamma-induced effects on erbium-doped optical Fibers,” IEEE Trans. Nucl. Sci.54(6), 2426–2434 (2007).
  16. E. Régnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Radiation-induced attenuation at IR wavelength in silica based optical fibers,” in Radiation Effects on Components and Systems (2006).
  17. J. Thomas, M. Myara, L. Troussellier, E. Régnier, E. Burov, O. Gilard, M. Sotom, and P. Signoret, “Experimental demonstration of the switching dose-rate method on doped optical fbers,” in International Conference on Space Optics (2010).
  18. B. Brichard, A. F. Fernandez, H. Ooms, and F. Berghmans, “Gamma dose rate effet in erbium-doped fibers for space gyroscopes,” in Proc. of the 16th International Conference on Optical Fiber Sensors (2003).
  19. D. Derickson, Fiber optic test and measurements, ed. (Prentice-Hall, 1998).
  20. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol.6, 122–154 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited