## Photon number resolving SiPM detector with 1 GHz count rate |

Optics Express, Vol. 20, Issue 3, pp. 2779-2788 (2012)

http://dx.doi.org/10.1364/OE.20.002779

Acrobat PDF (2463 KB)

### Abstract

We demonstrate 1 GHz count rate photon detection with photon number resolution by using a multi-pixel photon counter (MPPC) and performing baseline correction. A bare MPPC chip mounted on a high-frequency circuit board is employed to increase response speed. The photon number resolving capability is investigated at high repetition rates. This capability remains at a repetition rate of 1 GHz and at rates as high as an average of 2.6 photons detected per optical pulse. The photon detection efficiencies are 16% at λ = 450 nm and 4.5% at λ = 775 nm with a dark count rate of 270 kcps and an afterpulse probability of 0.007.

© 2012 OSA

## 1. Introduction

1. N. Bacchetta, D. Bisello, F. Broz, M. Catuozzo, Y. Gotra, E. Guschin, A. Lacaita, N. Malakhov, Y. Musienko, P. Nicolosi, A. Paccagnella, E. Pace, D. Pantano, Z. Sadygov, P. Villoresi, and F. Zappa, “MRS detectors with high gain for registration of weak visible and UV light fluxes,” Nucl. Instrum. Meth. A **387**(1-2), 225–230 (1997). [CrossRef]

5. C. Piemonte, “A new Silicon Photomultiplier structure for blue light detection,” Nucl. Instrum. Meth. A **568**(1), 224–232 (2006). [CrossRef]

6. M. Song, E. Won, and T. H. Yoon, “Large dynamic range photon detector with a temperature-stabilized Si-based multi-pixel photon counter,” Opt. Express **15**(25), 17099–17105 (2007). [CrossRef] [PubMed]

7. G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt. **49**(14), 2601–2605 (2010). [CrossRef]

8. E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Meth. A **571**(1-2), 130–133 (2007). [CrossRef]

9. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express **15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

9. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express **15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

10. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. **82**(7), 071101 (2011). [CrossRef] [PubMed]

10. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. **82**(7), 071101 (2011). [CrossRef] [PubMed]

11. R. H. Hadfield, “A single-photon detectors for optical quantum information applications,” Nat. Photonics **3**(12), 696–705 (2009). [CrossRef]

12. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. **94**(23), 231113 (2009). [CrossRef]

10. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. **82**(7), 071101 (2011). [CrossRef] [PubMed]

11. R. H. Hadfield, “A single-photon detectors for optical quantum information applications,” Nat. Photonics **3**(12), 696–705 (2009). [CrossRef]

**82**(7), 071101 (2011). [CrossRef] [PubMed]

13. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics **2**(5), 302–306 (2008). [CrossRef]

14. S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. R. Schaart, “Simulation of Silicon Photomultiplier Signals,” IEEE Trans. Nucl. Sci. **56**(6), 3726–3733 (2009). [CrossRef]

15. G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Meth. A **442**(1-3), 187–192 (2000). [CrossRef]

17. V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Meth. A **518**(1-2), 560–564 (2004). [CrossRef]

19. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express **17**(19), 16885–16897 (2009). [CrossRef] [PubMed]

14. S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. R. Schaart, “Simulation of Silicon Photomultiplier Signals,” IEEE Trans. Nucl. Sci. **56**(6), 3726–3733 (2009). [CrossRef]

^{2}for GHz count rate operation.

9. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express **15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

**15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

**15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

## 2. Experimental setup

^{2}. The self-inductance of a lead wire of the MPPC device package is estimated to be a few nH. An inductance of this size may increase the rise time of the MPPC output signal [14

14. S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. R. Schaart, “Simulation of Silicon Photomultiplier Signals,” IEEE Trans. Nucl. Sci. **56**(6), 3726–3733 (2009). [CrossRef]

19. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express **17**(19), 16885–16897 (2009). [CrossRef] [PubMed]

19. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express **17**(19), 16885–16897 (2009). [CrossRef] [PubMed]

## 3. Measurements and data analysis

*t*used here is 0.5 ns. Then the time interval needed is 1 ns, which is sufficiently small compared to the decay time scale of 7.5 ns (see Fig. 3). In this case, the correction value for the pulse height estimation would be obtained from a voltage difference in the tail just before the rising edge of the signal pulse. Consequently, the pulse height at a time

*t*,

_{p}*VH*, is expressed as the second-order finite difference,

_{p}*V*(

*t*) is the signal voltage at a time

*t*and

*t*marks the onset of the pulse (see Fig. 3). To simulate real-time operation, output signals should be expressed as signals from a two-stage self-differencing circuit (see Discussion). In this case,

_{p}*VH*is a function of time

*t*,

*i*th signal is to be determined. The slope of the baseline of the

*i*th signal can be estimated from the slope of the tail of the

*i*-1th signal by fitting a straight line to the tail. One problem in estimating the slope of the tail is timing jitter. Figure 8 plots the timing jitter for single-photon detection, including optical pulse width (0.1 ns) and electronic timing jitter. The signal timing is occasionally delayed by a considerable amount. If the interval between the

*i*-1th and

*i*th signals becomes significantly shorter due to timing jitter (illustrated by the dashed green line in Fig. 7a), the slope value in the interval to fit the straight line to the tail may be larger than the proper value because the fitting interval was set to be constant (see the solid green line in Fig. 7a). The reasons for using constant fitting-intervals will be described in the Discussion section. To mitigate this error, the slope of the tail of the

*i*th signal can be used (the blue line in Fig. 7a), instead of the slope of the tail of the

*i*-1th signal. The slope of the tail of the

*i*th signal, however, would also be affected by a shorter interval between the

*i*th and

*i*+ 1th signals (depicted by the dashed orange line in Fig. 7a).

*i*th and

*i*+ 1th slopes minimizes the contributions of noise and other fluctuations. The equation that we propose to determine the signal pulse height iswhere

*t*is the peak time of the

_{i}*i*th pulse,

*a*is the slope value of the

_{i}*i*th fitted straight line. The factors

*k*

_{1}and

*k*

_{2}are introduced to Eq. (2) in order to correct the difference between the fitted tail slope value and the baseline slope value. In the following analysis, the factors were set soas to make the photon number resolution highest at each repetition rate while Δ

*t*was set to 0.5 ns at all repetition rates.

## 4. Discussion

*k*

_{1}and

*k*

_{2}are set to be constant in the calculation of the signal pulse height for each set of experimental parameters, the optimum factors may vary from shot to shot because of the distortion due to exponential tails. When the distortion exists, the optimum factors are functions of the signal pulse position on the tail of a previous signal pulse. Since the signal pulse position fluctuates due to the timing jitter, the optimum factors can vary with the position. At high repetition rates, a fitted tail slope value results from a superposition of tail slopes of the previous signal pulses. This means that the factors are a weighted average of each factor corresponding to the signal pulse position on the tail of a previous signal pulse. Since the weight for each factor is proportional to the slope value and the slope values as a whole increase with the average number of photons detected per optical pulse, the weight varies with the fluctuation of the number of photons detected which follows a Poisson distribution. Therefore, the variation of the factor will be increased at large detected photon counts. Furthermore, at repetition rates close to 1 GHz, the interval where the slope is fitted inevitably contains the large distortion following the rising edge of the signal. For these reasons, the variation of the pulse height rapidly increases with repetition rate close to 1 GHz.

*k*

_{1}and

*k*

_{2}also become functions of the fitting interval due to the distortion. When the fitting interval is below the time scale of the distortion, optimum factors greatly fluctuate with the fitting interval and the pulse position. Furthermore, a shorter fitting interval causes larger fluctuation of the fitted tail slope values because of the electrical noise. In fact, when the fitting interval is varied using the slope of one side of the signal pulse while keeping the factors constant, the photon number resolution deteriorates compared to that using Eq. (2). Although the factors can be varied as functions of the fitting interval, the pulse position, and the heights of the previous pulses, the amount of calculation required will considerably increase.

*V*(

*t*), is represented by a finite difference of an input signal,

*V*(

*t*),

^{2}

*V*(

*t*), is then expressed as a finite difference of Δ

*V*(

*t*),

## 5. Conclusion

## Acknowledgments

## References and links

1. | N. Bacchetta, D. Bisello, F. Broz, M. Catuozzo, Y. Gotra, E. Guschin, A. Lacaita, N. Malakhov, Y. Musienko, P. Nicolosi, A. Paccagnella, E. Pace, D. Pantano, Z. Sadygov, P. Villoresi, and F. Zappa, “MRS detectors with high gain for registration of weak visible and UV light fluxes,” Nucl. Instrum. Meth. A |

2. | A. V. Akindinov, A. N. Martemianov, P. A. Polozov, V. M. Golovin, and E. A. Grigoriev, “New results on MRS APDs,” Nucl. Instrum. Meth. A |

3. | A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Meth. A |

4. | A. N. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. H. Richter, L. W. J. Struder, and M. Teshima, “Prospects of Using Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC,” IEEE Trans. Nucl. Sci. |

5. | C. Piemonte, “A new Silicon Photomultiplier structure for blue light detection,” Nucl. Instrum. Meth. A |

6. | M. Song, E. Won, and T. H. Yoon, “Large dynamic range photon detector with a temperature-stabilized Si-based multi-pixel photon counter,” Opt. Express |

7. | G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt. |

8. | E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Meth. A |

9. | P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express |

10. | M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. |

11. | R. H. Hadfield, “A single-photon detectors for optical quantum information applications,” Nat. Photonics |

12. | A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. |

13. | A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics |

14. | S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. R. Schaart, “Simulation of Silicon Photomultiplier Signals,” IEEE Trans. Nucl. Sci. |

15. | G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Meth. A |

16. | P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Meth. A |

17. | V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Meth. A |

18. | A. Persson, A. Khaplanov, and B. Cederwall, “A prototype detector module for combined PET/CT or combined photon counting/standard CT based on SiPM technology,” in IEEE Nucl. Sci. Symp. Conf. Rec., 3503–3507 (2009). |

19. | M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express |

**OCIS Codes**

(040.0040) Detectors : Detectors

(040.1240) Detectors : Arrays

(040.5160) Detectors : Photodetectors

(040.5570) Detectors : Quantum detectors

(040.1345) Detectors : Avalanche photodiodes (APDs)

**ToC Category:**

Detectors

**History**

Original Manuscript: October 12, 2011

Revised Manuscript: December 2, 2011

Manuscript Accepted: December 19, 2011

Published: January 23, 2012

**Citation**

M. Akiba, K. Inagaki, and K. Tsujino, "Photon number resolving SiPM detector with 1 GHz count rate," Opt. Express **20**, 2779-2788 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2779

Sort: Year | Journal | Reset

### References

- N. Bacchetta, D. Bisello, F. Broz, M. Catuozzo, Y. Gotra, E. Guschin, A. Lacaita, N. Malakhov, Y. Musienko, P. Nicolosi, A. Paccagnella, E. Pace, D. Pantano, Z. Sadygov, P. Villoresi, and F. Zappa, “MRS detectors with high gain for registration of weak visible and UV light fluxes,” Nucl. Instrum. Meth. A387(1-2), 225–230 (1997). [CrossRef]
- A. V. Akindinov, A. N. Martemianov, P. A. Polozov, V. M. Golovin, and E. A. Grigoriev, “New results on MRS APDs,” Nucl. Instrum. Meth. A387(1-2), 231–234 (1997). [CrossRef]
- A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Meth. A545(3), 705–715 (2005). [CrossRef]
- A. N. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. H. Richter, L. W. J. Struder, and M. Teshima, “Prospects of Using Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006). [CrossRef]
- C. Piemonte, “A new Silicon Photomultiplier structure for blue light detection,” Nucl. Instrum. Meth. A568(1), 224–232 (2006). [CrossRef]
- M. Song, E. Won, and T. H. Yoon, “Large dynamic range photon detector with a temperature-stabilized Si-based multi-pixel photon counter,” Opt. Express15(25), 17099–17105 (2007). [CrossRef] [PubMed]
- G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt.49(14), 2601–2605 (2010). [CrossRef]
- E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Meth. A571(1-2), 130–133 (2007). [CrossRef]
- P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express15(22), 14539–14549 (2007). [CrossRef] [PubMed]
- M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011). [CrossRef] [PubMed]
- R. H. Hadfield, “A single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009). [CrossRef]
- A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett.94(23), 231113 (2009). [CrossRef]
- A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics2(5), 302–306 (2008). [CrossRef]
- S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. R. Schaart, “Simulation of Silicon Photomultiplier Signals,” IEEE Trans. Nucl. Sci.56(6), 3726–3733 (2009). [CrossRef]
- G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Meth. A442(1-3), 187–192 (2000). [CrossRef]
- P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Meth. A504(1-3), 48–52 (2003). [CrossRef]
- V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Meth. A518(1-2), 560–564 (2004). [CrossRef]
- A. Persson, A. Khaplanov, and B. Cederwall, “A prototype detector module for combined PET/CT or combined photon counting/standard CT based on SiPM technology,” in IEEE Nucl. Sci. Symp. Conf. Rec., 3503–3507 (2009).
- M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express17(19), 16885–16897 (2009). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.