OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3219–3224
« Show journal navigation

23 GHz Ge/SiGe multiple quantum well electro-absorption modulator

Papichaya Chaisakul, Delphine Marris-Morini, Mohamed-Saïd Rouifed, Giovanni Isella, Daniel Chrastina, Jacopo Frigerio, Xavier Le Roux, Samson Edmond, Jean-René Coudevylle, and Laurent Vivien  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3219-3224 (2012)
http://dx.doi.org/10.1364/OE.20.003219


View Full Text Article

Acrobat PDF (1684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on high speed operation of a Ge/SiGe multiple quantum well (MQW) electro-absorption modulator in a waveguide configuration. 23 GHz bandwidth is experimentally demonstrated from a 3 µm wide and 90 µm long Ge/SiGe MQW waveguide. The modulator exhibits a high extinction ratio of more than 10 dB over a wide spectral range. Moreover with a swing voltage of 1 V between 3 and 4 V, an extinction ratio as high as 9 dB can be obtained with a corresponding estimated energy consumption of 108 fJ per bit. This demonstrates the potentiality of Ge/SiGe MQWs as a building block of silicon compatible photonic integrated circuits for short distance energy efficient optical interconnections.

© 2012 OSA

1. Introduction

For several years, there has been a lot of research attention on optical interconnects as a potential replacement of copper wires. The projected applications range from data-storage centers, to board to board, chip to chip and even to on-chip data links [1

1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007). [CrossRef]

, 2

2. J.-M. Fedeli, B. Ben Bakir, L. Grenouillet, D. Marris-Morini, and L. Vivien, Silicon Photonics II: Photonics and Electronics Integration (Springer, 2011), pp. 217–249.

]. However, to be a viable candidate at the chip scale, optical interconnects have to meet aggressive requirements in terms of power consumption, data density, and preferably monolithic integration with silicon. For example, it has been suggested that to effectively replace copper wire, optical output devices with an energy consumption of less than 100 fJ/bit will be required by 2020 [3

3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]

]. Moreover, the devices should operate over a wide spectral range to facilitate wavelength-division multiplexing (WDM). Such low power consumption and wideband devices are not obtainable with conventional silicon modulators based on a Mach–Zehnder interferometer (MZI) or a resonator [3

3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]

, 4

4. D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fédéli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009). [CrossRef]

]. In this aspect, the electro-absorption (EA) modulator is one of the best approaches to obtain low energy consumption and high speed modulation due to its small footprint (low capacitance) and subpicosecond operation time for a wide spectral range [5

5. S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?” Opt. Lett. 15(1), 60–62 (1990). [CrossRef] [PubMed]

]. Strong electroabsorption can be obtained from III-V direct-gap materials based on quantum confined Stark effect (QCSE); epitaxial growth, wafer bonding, or die bonding of III-V materials on Si are currently under investigation by several research teams [6

6. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). [CrossRef]

]. On the other hand, Ge, a group IV material like Si, has been successfully monolithically integrated into CMOS fabrication processes by several semiconductor companies [7

7. Luxtera, Inc., (March 14, 2007), “Integrated Photodetector on Mainstream SOI-CMOS Wafer,” http://www.luxtera.com/2007031345/luxtera-announces-technology-breakthrough-of-germanium-enabled-integrated-photodetector.html.

, 8

8. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010). [CrossRef] [PubMed]

]. Despite being an indirect-gap semiconductor, the direct-gap transition in bulk Ge has been shown to have light modulation, detection, and emission capabilities within the telecommunication wavelengths [8

8. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010). [CrossRef] [PubMed]

13

13. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011). [CrossRef] [PubMed]

]. Particularly for light modulation, bulk Ge or SiGe EA modulators [11

11. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]

13

13. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011). [CrossRef] [PubMed]

] based on the Franz-Keldysh effect (FKE) have been demonstrated with low energy consumption [11

11. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]

] and large 3 dB bandwidth [13

13. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011). [CrossRef] [PubMed]

]. Interestingly, Ge quantum wells (QWs) [14

14. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005). [CrossRef] [PubMed]

17

17. L. Lever, Y. Hu, M. Myronov, X. Liu, N. Owens, F. Y. Gardes, I. P. Marko, S. J. Sweeney, Z. Ikonić, D. R. Leadley, G. T. Reed, and R. W. Kelsall, “Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon,” Opt. Lett. 36(21), 4158–4160 (2011). [CrossRef] [PubMed]

] have demonstrated a QCSE as strong as that of III-V semiconductor QWs conventionally used for high performance photonic devices, and the possibility for light detection and emission have also been demonstrated [18

18. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photon. Technol. Lett. 23(20), 1430–1432 (2011). [CrossRef]

, 19

19. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011). [CrossRef]

]. A strong light modulation from Ge/SiGe MQWs with a voltage swing of 1 V has been shown from a modulator with side-entry configuration [20

20. J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “C-band side-entry Ge quantum well electroabsorption modulator on SOI operating at 1 volt swing,” Electron. Lett. 44(1), 49–50 (2008). [CrossRef]

]. So far, high speed modulation using Ge/SiGe MQWs has been demonstrated up to 3.5 GHz using a surface illuminated p-i-n diode structure [21

21. Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M. R. T. Tan, T. I. Kamins, T. J. Ochalski, G. Huyet, and J. S. Harris, “Quantum-confined Stark effect in Ge/SiGe qunatum wells on Si,” IEEE J. Sel. Top. Quantum Electron. 16(1), 85–92 (2010). [CrossRef]

] and transmission at 7 Gbps has also been demonstrated in waveguide configuration based on butt-coupling between the MQW structure and a Silicon-on-Insulator (SOI) waveguide [22

22. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett. submitted.

]. In this paper, we demonstrate a modulator with a modulation bandwidth of 23 GHz obtained from a Ge/SiGe MQW waveguide. The modulator also exhibits high extinction ratio over a wide spectral range with an estimated energy consumption of as low as 108 fJ per bit.

2. Ge/SiGe MQWs and device fabrication

Ge/SiGe MQWs were grown by low-energy plasma-enhanced chemical vapor deposition (LEPECVD) [23

23. G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004). [CrossRef]

]. On a 100 mm Si(001) substrate, a 13 µm Si1−yGey graded buffer was deposited with linearly increasing Ge concentration y at a rate of 7%/μm from Si to Si0.1 Ge0.9 and capped with a 2 µm Si0.1Ge0.9 layer forming a fully relaxed virtual substrate (VS). A 500 nm boron-doped (~1 × 1018 cm−3) Si0.1Ge0.9 layer was grown to serve as a p-type contact, and followed by a 50 nm Si0.1Ge0.9 spacer. The MQW itself consisted of twenty nominally 10 nm Ge QWs sandwiched between 15 nm Si0.15Ge0.85 barriers. The average Ge concentration in the Ge/SiGe MQWs was designed to be equal to that of the Si0.1Ge0.9 VS in order to achieve strain compensation. Finally, a 50 nm Si0.1Ge0.9 cap layer and a 100 nm phosphorus-doped (~1 × 1018 cm−3) Si0.1 Ge0.9 n-type contact were added.

A 3 µm wide 90 µm long Ge/SiGe MQW p-i-n diode was fabricated in order to investigate the modulation performance of Ge QWs in waveguide configuration. The mesa was patterned by ultraviolet (UV) lithography and dry etching. A passivation stack of SiO2/Si3N4 was deposited by plasma enhanced chemical vapor deposition (PECVD). The bottom and top contacts were defined by UV lithography, reactive ion etching, and wet etching of the passivation layer. An Al layer was evaporated and lifted-off for both top and bottom contacts. The schematic view and scanning electron microscope (SEM) images of the fabricated device are shown in Fig. 1(a) and (b)
Fig. 1 (a) Schematic view and (b) scanning electron microscope (SEM) images of the fabricated device; (c) The fundamental optical mode of the waveguide; (d) Detailed cross section of the fabricated diode.
respectively. Mode calculations were performed using a film mode matching complex solver assuming a linear variation of refractive index in the graded buffer as discussed in Ref. 24

24. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, J.-R. Coudevylle, E. Cassan, and L. Vivien, “Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides,” Opt. Lett. 36(10), 1794–1796 (2011). [CrossRef] [PubMed]

. Light is guided within the Ge/SiGe MQWs and the 2 µm relaxed buffer thanks to the light confinement of the graded buffer. Assuming that 10 nm-Ge / 15 nm-Si0.15Ge0.85 MQW region is equivalent to a Si0.09Ge0.91 homogeneous region, the overlap factor of the first TE mode with the MQW region was calculated to be 12%. The fundamental optical mode of the waveguide and its detailed cross section are shown in Fig. 1(c) and (d).

3. Device characterization

Transmission measurements of the Ge/SiGe MQW waveguides at several reverse bias voltages were performed at room temperature with a spectral resolution of 0.1 nm from 1400 to 1460 nm, covering the absorption edge of the material system. Light from a tunable laser with transverse-electric (TE) polarization [24

24. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, J.-R. Coudevylle, E. Cassan, and L. Vivien, “Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides,” Opt. Lett. 36(10), 1794–1796 (2011). [CrossRef] [PubMed]

] was butt coupled into the waveguide using a taper-lensed fiber. Objective lenses were used to couple output light into a single mode fiber connected to a digital photodetector recording the output power. The coupling loss at the input and output facets was subtracted from the spectra by using a cut-back technique. Transmission measurements of 3 µm wide Ge/SiGe MQW waveguides with different lengths were conducted at a particular wavelength within the measurement range; then, by extrapolating the data to a zero waveguide length, the coupling loss was estimated.

The frequency response of the modulator was evaluated at 1448 nm, where the signal level is larger. As shown in Fig. 3(a)
Fig. 3 (a) Diagram of the system for measuring frequency response of the Ge/SiGe MQW modulator; (b) Normalized optical response at the dc reverse bias of - 4.5 V as a function of the frequency.
, optical light was butt-coupled into the waveguide, and an ac signal generated by an opto-RF vector network analyzer (Agilent 86030A) coupled with a dc bias Tee was used to drive the modulator using coplanar electrodes. The modulated optical signal was coupled back to the opto-RF vector network analyzer by objective lenses. The normalized optical response at the dc reverse bias of - 4.5 V as a function of frequency is given in Fig. 3(b). A 3 dB cut-off frequency of 23 GHz was experimentally obtained from the waveguide modulator.

For energy consumption, the junction capacitance of the waveguide device with a size of 3 μm x 90 μm and 20 Ge QWs is calculated to be 62 fF, which is also consistent with the values extracted from S11 parameter measurement. The formula used in the device energy consumption calculation is energy/bit = 1/4 (CVoff2-CVon2) [13

13. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011). [CrossRef] [PubMed]

] in which C is the junction capacitance and Voff and Von are the bias voltages at the “off” and “on” states. The formula represents the main contribution of device energy consumption required to charge and discharge the capacitance in the case of non return to zero (NRZ) data, in which the probability of a transition between “on” and “off” states is 1/2 per bit. Therefore, the energy consumption per bit of the EA modulator in this paper can estimated to be 108 fJ/bit for a voltage swing of 1 V between 3 and 4 V biases, 248 fJ/bit for a voltage swing of 2 and 4 V between 3 and 5 V biases and 0 and 4 V biases respectively, and 388 fJ/bit for a voltage swing of 5 V between 0 and 5 V biases. These values are very competitive compared to silicon MZI modulators [4

4. D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fédéli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009). [CrossRef]

], and of the same order of magnitude as demonstrated bulk Ge modulators [11

11. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]

13

13. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011). [CrossRef] [PubMed]

]. Furthermore, the energy consumption of Ge/SiGe MQW modulators could be further reduced by simply using devices with smaller width and shorter length [22

22. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett. submitted.

] and increasing the overlap factor between the optical mode and the active region, for example by optimizing the thickness of the relaxed buffer and the doped layers, in order to retain a high ER. Additionally, it is worth mentioning that dark leakage and photogenerated current during the “on” and “off” states also contribute to the energy dissipation of the EA modulator. In our devices, relatively low dark leakage current values of 200 A/cm2 at −1 V bias were demonstrated with a flat increase in reverse current up to a bias of - 8 V; therefore, this power dissipation is not expected to contribute dominantly in our structures. Photogenerated currents depend on the input power level and operating conditions and a detailed discussion of the corresponding energy dissipation can be found in Ref 25

25. R. K. Schaevitz, E. H. Edwards, J. E. Roth, E. T. Fei, Y. Rong, P. Wahl, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron. submitted.

.

4. Conclusion

To summarize, we demonstrate the first high speed modulation up to 23 GHz using QCSE in Ge/SiGe MQWs. The modulator is in waveguide configuration. The Ge/SiGe MQWs exhibit a wide spectral range with an ER greater than 10 dB with the use of only 90 µm long device with an estimated energy consumption of 108 fJ per bit. By improving the overlap factor between the optical mode and the Ge/SiGe MQW region, smaller devices with even lower energy consumption and comparable ER can be envisioned.

Acknowledgments

References and links

1.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007). [CrossRef]

2.

J.-M. Fedeli, B. Ben Bakir, L. Grenouillet, D. Marris-Morini, and L. Vivien, Silicon Photonics II: Photonics and Electronics Integration (Springer, 2011), pp. 217–249.

3.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]

4.

D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fédéli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009). [CrossRef]

5.

S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?” Opt. Lett. 15(1), 60–62 (1990). [CrossRef] [PubMed]

6.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). [CrossRef]

7.

Luxtera, Inc., (March 14, 2007), “Integrated Photodetector on Mainstream SOI-CMOS Wafer,” http://www.luxtera.com/2007031345/luxtera-announces-technology-breakthrough-of-germanium-enabled-integrated-photodetector.html.

8.

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010). [CrossRef] [PubMed]

9.

S. Jongthammanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett. 89(16), 161115 (2006). [CrossRef]

10.

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010). [CrossRef] [PubMed]

11.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]

12.

A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express 19(6), 5040–5046 (2011). [CrossRef] [PubMed]

13.

N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011). [CrossRef] [PubMed]

14.

Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005). [CrossRef] [PubMed]

15.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett. 35(17), 2913–2915 (2010). [CrossRef] [PubMed]

16.

N. S. Köster, K. Kolata, R. Woscholski, C. Lange, G. Isella, D. Chrastina, H. von Känel, and S. Chatterjee, “Giant dynamical Stark shift in germanium quantum wells,” Appl. Phys. Lett. 98(16), 161103 (2011). [CrossRef]

17.

L. Lever, Y. Hu, M. Myronov, X. Liu, N. Owens, F. Y. Gardes, I. P. Marko, S. J. Sweeney, Z. Ikonić, D. R. Leadley, G. T. Reed, and R. W. Kelsall, “Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon,” Opt. Lett. 36(21), 4158–4160 (2011). [CrossRef] [PubMed]

18.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photon. Technol. Lett. 23(20), 1430–1432 (2011). [CrossRef]

19.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011). [CrossRef]

20.

J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “C-band side-entry Ge quantum well electroabsorption modulator on SOI operating at 1 volt swing,” Electron. Lett. 44(1), 49–50 (2008). [CrossRef]

21.

Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M. R. T. Tan, T. I. Kamins, T. J. Ochalski, G. Huyet, and J. S. Harris, “Quantum-confined Stark effect in Ge/SiGe qunatum wells on Si,” IEEE J. Sel. Top. Quantum Electron. 16(1), 85–92 (2010). [CrossRef]

22.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett. submitted.

23.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004). [CrossRef]

24.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, J.-R. Coudevylle, E. Cassan, and L. Vivien, “Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides,” Opt. Lett. 36(10), 1794–1796 (2011). [CrossRef] [PubMed]

25.

R. K. Schaevitz, E. H. Edwards, J. E. Roth, E. T. Fei, Y. Rong, P. Wahl, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron. submitted.

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.2100) Materials : Electro-optical materials
(200.4650) Optics in computing : Optical interconnects
(230.2090) Optical devices : Electro-optical devices
(230.4205) Optical devices : Multiple quantum well (MQW) modulators
(130.4110) Integrated optics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: December 15, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 17, 2012
Published: January 26, 2012

Citation
Papichaya Chaisakul, Delphine Marris-Morini, Mohamed-Saïd Rouifed, Giovanni Isella, Daniel Chrastina, Jacopo Frigerio, Xavier Le Roux, Samson Edmond, Jean-René Coudevylle, and Laurent Vivien, "23 GHz Ge/SiGe multiple quantum well electro-absorption modulator," Opt. Express 20, 3219-3224 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007). [CrossRef]
  2. J.-M. Fedeli, B. Ben Bakir, L. Grenouillet, D. Marris-Morini, and L. Vivien, Silicon Photonics II: Photonics and Electronics Integration (Springer, 2011), pp. 217–249.
  3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  4. D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fédéli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, M. Halbwax, and S. Laval, “Recent progress in high speed silicon-based optical modulators,” Proc. IEEE97(7), 1199–1215 (2009). [CrossRef]
  5. S. Schmitt-Rink, D. S. Chemla, W. H. Knox, and D. A. B. Miller, “How fast is excitonic electroabsorption?” Opt. Lett.15(1), 60–62 (1990). [CrossRef] [PubMed]
  6. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics4(8), 511–517 (2010). [CrossRef]
  7. Luxtera, Inc., (March 14, 2007), “Integrated Photodetector on Mainstream SOI-CMOS Wafer,” http://www.luxtera.com/2007031345/luxtera-announces-technology-breakthrough-of-germanium-enabled-integrated-photodetector.html .
  8. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express18(5), 4986–4999 (2010). [CrossRef] [PubMed]
  9. S. Jongthammanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, “Large electro-optic effect in tensile strained Ge-on-Si films,” Appl. Phys. Lett.89(16), 161115 (2006). [CrossRef]
  10. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010). [CrossRef] [PubMed]
  11. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008). [CrossRef]
  12. A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express19(6), 5040–5046 (2011). [CrossRef] [PubMed]
  13. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011). [CrossRef] [PubMed]
  14. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  15. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, E. Gatti, S. Edmond, J. Osmond, E. Cassan, and L. Vivien, “Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures,” Opt. Lett.35(17), 2913–2915 (2010). [CrossRef] [PubMed]
  16. N. S. Köster, K. Kolata, R. Woscholski, C. Lange, G. Isella, D. Chrastina, H. von Känel, and S. Chatterjee, “Giant dynamical Stark shift in germanium quantum wells,” Appl. Phys. Lett.98(16), 161103 (2011). [CrossRef]
  17. L. Lever, Y. Hu, M. Myronov, X. Liu, N. Owens, F. Y. Gardes, I. P. Marko, S. J. Sweeney, Z. Ikonić, D. R. Leadley, G. T. Reed, and R. W. Kelsall, “Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon,” Opt. Lett.36(21), 4158–4160 (2011). [CrossRef] [PubMed]
  18. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photon. Technol. Lett.23(20), 1430–1432 (2011). [CrossRef]
  19. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011). [CrossRef]
  20. J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “C-band side-entry Ge quantum well electroabsorption modulator on SOI operating at 1 volt swing,” Electron. Lett.44(1), 49–50 (2008). [CrossRef]
  21. Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M. R. T. Tan, T. I. Kamins, T. J. Ochalski, G. Huyet, and J. S. Harris, “Quantum-confined Stark effect in Ge/SiGe qunatum wells on Si,” IEEE J. Sel. Top. Quantum Electron.16(1), 85–92 (2010). [CrossRef]
  22. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.submitted.
  23. G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron.48(8), 1317–1323 (2004). [CrossRef]
  24. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, J.-R. Coudevylle, E. Cassan, and L. Vivien, “Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides,” Opt. Lett.36(10), 1794–1796 (2011). [CrossRef] [PubMed]
  25. R. K. Schaevitz, E. H. Edwards, J. E. Roth, E. T. Fei, Y. Rong, P. Wahl, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron.submitted.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited