## Proposal for a superconducting photon number resolving detector with large dynamic range |

Optics Express, Vol. 20, Issue 5, pp. 5017-5028 (2012)

http://dx.doi.org/10.1364/OE.20.005017

Acrobat PDF (1845 KB)

### Abstract

We propose a novel photon number resolving detector structure with large dynamic range. It consists of the series connection of *N* superconducting nanowires, each connected in parallel to an integrated resistor. Photon absorption in a wire switches its current to the parallel resistor producing a voltage pulse and the sum of these voltages is measured at the output. The combination of this structure and a high input impedance preamplifier result in linear, high fidelity, and fast photon detection in the range from one to several tens of photons.

© 2012 OSA

## 1. Introduction

1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature **409**(6816), 46–52 (2001). [CrossRef] [PubMed]

2. P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. **79**(1), 135–174 (2007). [CrossRef]

3. N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A **76**(5), 050301 (2007). [CrossRef]

4. M. Fujiwara and M. Sasaki, “Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector,” Appl. Opt. **46**(16), 3069–3074 (2007). [CrossRef] [PubMed]

5. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express **16**(5), 3032–3040 (2008). [CrossRef] [PubMed]

6. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics **2**(7), 425–428 (2008). [CrossRef]

7. J. Kitaygorsky, S. Dorenbos, E. Reiger, R. Schouten, V. Zwiller, and R. Sobolewski, “HEMT-based readout technique for dark- and photon-count studies in NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. **19**(3), 346 (2009). [CrossRef]

8. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A **68**(4), 043814 (2003). [CrossRef]

9. P. Eraerds, E. Pomarico, J. Zhang, B. Sanguinetti, R. Thew, and H. Zbinden, “32 bin near-infrared time-multiplexing detector with attojoule single-shot energy resolution,” Rev. Sci. Instrum. **81**(10), 103105 (2010). [CrossRef] [PubMed]

10. L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A **75**(6), 062325 (2007). [CrossRef]

11. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. **56**(2-3), 364–373 (2009). [CrossRef]

12. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics **2**(5), 302–306 (2008). [CrossRef]

13. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. **11**(4), 045022 (2009). [CrossRef]

## 2. Device structure

*N*superconducting nanowires, each connected in parallel to a resistor (R

_{p}). As shown in Fig. 1 , each nanowire is electrically modeled as an inductor (L

_{k}) in series with a time variable resistor R

_{n}(t) with a nonzero value after absorption of a photon. The parallel resistor R

_{p}may be monolithically integrated with the nanowire, for example as shown in Fig. 1, by deposition and patterning of gold or other metal thin films. The resistor could also be defined below or above the NbN wire, in order to maximize the filling factor.

14. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. **79**(6), 705 (2001). [CrossRef]

_{p}is smaller than the photon-induced normal resistance of the nanowire R

_{n}(t), the bias current switches to the parallel resistor and a voltage pulse is formed across the branch. If more branches fire, the voltages produced across them are summed up and the output voltage is proportional to the number of firing detectors, i.e. the number of absorbed photons, provided that all photons are absorbed in distinct branches. The parallel resistance R

_{p}has the key role of discharging the wire after a resistive transition, thus avoiding latching. We note that the SND has an electrical structure which is dual to the one of the PND, where the wires have resistors in series and are connected in parallel.

13. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. **11**(4), 045022 (2009). [CrossRef]

## 3. Simulation method

22. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. **17**(2), 581 (2007). [CrossRef]

*T(x,t)*is the wire temperature,

*T*is the substrate temperature,

_{sub}*J*is the current density through the wire,

*ρ*is the normal state resistivity of the superconducting film,

*κ*is the thermal conductivity of the wire,

*α*is the thermal boundary conductivity between nanowire and substrate,

*d*is the nanowire thickness, and

*c*is the specific heat per unit volume of the wire. The first term of Eq. (1),

*J*

^{2}

*ρ*represents Joule heating and couples the thermal equation to the electrical equations governing the circuit.

*L*[22

_{th}22. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. **17**(2), 581 (2007). [CrossRef]

*d*= 4.1nm thick,

*w*= 100nm wide NbN nanowires on a GaAs substrate, folded in a meander with

*f*= 50% filling factor. Two cases with

*N*= 10, 4μm-long detecting sections and

*N*= 100, 40μm-long detecting sections in series are considered giving square total detection area of 4μm x 4μm and 40μm x 40μm, respectively. Based on the experimental current-voltage characteristics of a typical NbN SSPD on GaAs [17

17. A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. **97**(15), 151108 (2010). [CrossRef]

*T*= 10.5K, and critical current

_{c}*I*= 22μA at the base temperature of

_{c}*T*= 2K, with the kinetic inductance

_{sub}*L*= 90pH/□. The normal region resistivity is

_{k}*ρ*= 3μΩm,

*α*= 1.92x10

^{5}W/Ωm at 2K, and

*L*= 25nm. The value of the parallel resistor to each detection section is chosen to be

_{th}*R*= 80Ω, avoiding any latching or unwanted oscillation [23

_{p}23. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B **79**(10), 100509 (2009). [CrossRef]

*R*= 50Ω load via a coaxial cable and room-temperature amplifier, and a high impedance (1MΩ) readout that can be achieved for instance by a high impedance cryogenic preamplifier mounted close to the detector. The latter paves the way for realization of scalable SNDs which provide a large number of detecting elements.

_{L}## 4. SND electrothermal responses

*N*= 10 sections with the load impedance of R

_{L}= 50Ω (R

_{L}= 1MΩ gives identical results). Photon absorption at time

*t*= 0 and the subsequent Joule heating lead to the growth of the initial hotspot, forming a time-variable resistor, as shown in Fig. 3(b). As long as the temperature is increasing, more regions become resistive, leading to a maximum resistance of R

_{n}≈320Ω. This resistive region starts to shrink as the bias current is diverted to R

_{p}, and finally disappears in ~50ps. Figure 3(c) and d show the corresponding temperature map and R

_{n}(t) for the case of an

*N*= 100 sections SND, where the number of squares for each element (and consequently L

_{k}) is 10 times larger. In this case, due to the larger kinetic inductance, the hotspot expands more before it cools down. This results in a normal state resistance of ~1.1kΩ which drops down to zero in ~110ps. We note that although the maximum temperature of the hotspot in both cases is still lower than

*T*, the superconducting to normal transition occurs in the hot regions when the bias current exceeds the critical current, which strongly decreases as the temperature rises.

_{c}_{c}, getting benefit from its maximum QE.

*R*= 1MΩ. In this case, the current redistribution problem is not present. The current transient in the firing branches does not depend on the number of switching wires, and is entirely diverted to parallel resistor. The current of the unfiring section also remains unchanged, i.e.

_{L}*I*(Fig. 4(e)). Therefore, the voltage developed across a section after each photon detection event is accurately measured across the load and the voltage of the unfiring branch remains zero. In other words, the detection sections are decoupled from each other, which is highly favorable for a PNR detector. Furthermore, the higher voltage levels produced at the high impedance load are substantially easier to read out (Fig. 4(f)). This becomes more important in discriminating

_{uf}= I_{b}*n*and

*n + 1*states, particularly when dealing with large dynamic ranges.

*N*= 10 and

*N*= 100, with 50Ω and high impedance readout for

*N*= 10 and only high impedance readout for

*N*= 100. Although the conventional 50Ω readout produces a response close to linear, the signal level is reduced a lot, due to the fact that not all the voltage produced across the parallel resistors is read at the 50Ω load. For the high impedance load, however, perfect linearity as well as easy voltage readout is achieved. We note that the slightly larger output voltage and slower response for the

*N*= 100 case is due the larger wire length and kinetic inductance used for the

*N*= 100 design.

## 5. Dynamic characteristics of the SND

*τ*

_{1}and

*τ*

_{3}, given in the equations of Fig. 6. We can conclude that for the

*N*= 10 elements SND, the maximum repetition range can reach nearly 200MHz with a traditional readout, while with a high impedance readout it can exceed 2GHz.

## 6. SND response with realistic high-impedance readout

*C*= 180fF for reading out an SND with

*N*= 10 sections, requires a change in the value of the parallel and load resistors to

*R*= 40Ω and

_{p}*R*= 10kΩ, respectively, to avoid latching. For an SND with

_{L}*N*= 100 sections with

*R*= 40Ω, the load resistance can be kept as

_{p}*R*= 1MΩ. The output voltages considering the added parallel capacitance at

_{L}*I*= 0.99

_{b}*I*for the case of

_{c}*n*= 1-10 detected photons are shown in Fig. 7 , with the insets showing the linearity of the output voltages versus the number of detected photons. It is seen that although lowering

*R*and

_{p}*R*decreases the signal amplitude, the effect on the linearity is marginal and both output amplitude and linearity are still much better than the case of 50Ω readout.

_{L}## 7. Limitations of the fidelity in an SND

24. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. **5**(1), 27–30 (2009). [CrossRef]

*P*(

*m*|

*n*) of measuring

*m*photons when

*n*are incident. Here, we take the probability

*P*(

*n*|

*n*) of correctly measuring

*n*incident photons as a measure of fidelity. In order to maximize the probability of detecting all photons in an optical pulse, it is necessary that the number

*N*of detection elements is much larger than

*n*, so that the probability that two or more photons are absorbed in the same detector is small. On the other hand, each detecting element may have a non-unity QE, which imposes another limitation to the fidelity of photon state detection, resulting in an underestimation of the number of incident photons. As shown in [8

8. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A **68**(4), 043814 (2003). [CrossRef]

*n*photons are evenly distributed to

*N*output modes (

*n*≤

*N*), and at each output mode there is a detector with quantum efficiency QE =

*η*, the probability of detecting all

*n*photons is given by:

*n*= 1-10 photons, with a

*N*= 100 element-SND, assuming three cases with QE values of 1, 0.9 and 0.8 for all the detecting elements. As it was previously shown [8

8. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A **68**(4), 043814 (2003). [CrossRef]

11. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. **56**(2-3), 364–373 (2009). [CrossRef]

**68**(4), 043814 (2003). [CrossRef]

12. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics **2**(5), 302–306 (2008). [CrossRef]

5. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express **16**(5), 3032–3040 (2008). [CrossRef] [PubMed]

*n*

_{det}> as a function of the average number of incident photons per pulse <

*n*

_{inc}> assuming a Poissonian source, for an SND with

*N*= 100 elements and QE = 1, calculated as described in [8

**68**(4), 043814 (2003). [CrossRef]

*n*<<

*N*, with increasing saturation as n approaches

*N*. However, the deviation from a linear slope is quite acceptable even for

*n*~

*N*/2.

## 8. Conclusion

## Acknowledgments

## References and links

1. | E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature |

2. | P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. |

3. | N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A |

4. | M. Fujiwara and M. Sasaki, “Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector,” Appl. Opt. |

5. | A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express |

6. | B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics |

7. | J. Kitaygorsky, S. Dorenbos, E. Reiger, R. Schouten, V. Zwiller, and R. Sobolewski, “HEMT-based readout technique for dark- and photon-count studies in NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. |

8. | M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A |

9. | P. Eraerds, E. Pomarico, J. Zhang, B. Sanguinetti, R. Thew, and H. Zbinden, “32 bin near-infrared time-multiplexing detector with attojoule single-shot energy resolution,” Rev. Sci. Instrum. |

10. | L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A |

11. | E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. |

12. | A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics |

13. | F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. |

14. | G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. |

15. | K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express |

16. | B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett. |

17. | A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. |

18. | M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. |

19. | J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. |

20. | E. A. Dauler, A. J. Kerman, D. Rosenberg, S. Pan, M. E. Grein, R. J. Molnar, R. E. Correa, M. G. Bawendi, K. K. Berggren, J. D. Moores, and D. M. Boroson, “Superconducting nanowire single photon detectors,” in |

21. | W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High speed travelling wave single-photon detectors with near-unity quantum efficiency,” arXiv:1108.5299, (2011). |

22. | J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. |

23. | A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B |

24. | J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. |

**OCIS Codes**

(040.3780) Detectors : Low light level

(040.5160) Detectors : Photodetectors

**ToC Category:**

Detectors

**History**

Original Manuscript: November 9, 2011

Revised Manuscript: January 16, 2012

Manuscript Accepted: February 7, 2012

Published: February 14, 2012

**Citation**

Saeedeh Jahanmirinejad and Andrea Fiore, "Proposal for a superconducting photon number resolving detector with large dynamic range," Opt. Express **20**, 5017-5028 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5017

Sort: Year | Journal | Reset

### References

- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001). [CrossRef] [PubMed]
- P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007). [CrossRef]
- N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A76(5), 050301 (2007). [CrossRef]
- M. Fujiwara and M. Sasaki, “Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector,” Appl. Opt.46(16), 3069–3074 (2007). [CrossRef] [PubMed]
- A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008). [CrossRef] [PubMed]
- B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics2(7), 425–428 (2008). [CrossRef]
- J. Kitaygorsky, S. Dorenbos, E. Reiger, R. Schouten, V. Zwiller, and R. Sobolewski, “HEMT-based readout technique for dark- and photon-count studies in NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 346 (2009). [CrossRef]
- M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A68(4), 043814 (2003). [CrossRef]
- P. Eraerds, E. Pomarico, J. Zhang, B. Sanguinetti, R. Thew, and H. Zbinden, “32 bin near-infrared time-multiplexing detector with attojoule single-shot energy resolution,” Rev. Sci. Instrum.81(10), 103105 (2010). [CrossRef] [PubMed]
- L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A75(6), 062325 (2007). [CrossRef]
- E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt.56(2-3), 364–373 (2009). [CrossRef]
- A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics2(5), 302–306 (2008). [CrossRef]
- F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys.11(4), 045022 (2009). [CrossRef]
- G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705 (2001). [CrossRef]
- K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006). [CrossRef] [PubMed]
- B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett.95(19), 191110 (2009). [CrossRef]
- A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett.97(15), 151108 (2010). [CrossRef]
- M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010). [CrossRef]
- J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011). [CrossRef]
- E. A. Dauler, A. J. Kerman, D. Rosenberg, S. Pan, M. E. Grein, R. J. Molnar, R. E. Correa, M. G. Bawendi, K. K. Berggren, J. D. Moores, and D. M. Boroson, “Superconducting nanowire single photon detectors,” in Proceedings of 24th Annual Meeting of IEEE Photonics Society, 2011, pp.350–351.
- W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High speed travelling wave single-photon detectors with near-unity quantum efficiency,” arXiv:1108.5299, (2011).
- J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581 (2007). [CrossRef]
- A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009). [CrossRef]
- J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys.5(1), 27–30 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.