## Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial |

Optics Express, Vol. 20, Issue 5, pp. 5213-5218 (2012)

http://dx.doi.org/10.1364/OE.20.005213

Acrobat PDF (1117 KB)

### Abstract

We studied the quantum properties of magnetic plasmon waves in a three-dimensional coupled metamaterial. A Hong-Ou-Mandel dip of two-photon interference with a visibility of *86 ± 6.0%* was explicitly observed, when the sample was inserted into one of the two arms of the interferometer. This meant that the quantum interference property survived in such a magnetic plasmon wave-mediated transmission process, thus testifying the magnetic plasmon waves owned a quantum nature. A full quantum model was utilized to describe our experimental results. The results showed that the metamaterials could not only steer the classical light but also the non-classical light and they might have potential application in the future quantum information.

© 2012 OSA

1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. **47**(11), 2075–2084 (1999). [CrossRef]

2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science **292**(5514), 77–79 (2001). [CrossRef] [PubMed]

3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. **85**(18), 3966–3969 (2000). [CrossRef] [PubMed]

4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science **312**(5781), 1780–1782 (2006). [CrossRef] [PubMed]

5. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. **102**(25), 253902 (2009). [CrossRef] [PubMed]

*etc.*In previous works, most of researches focused on two-dimensionally planar metamaterials. Due to the recent progresses of nano-fabrication technology, the 3D optical metamaterials can be realized, exhibiting bulk negative index [6

6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature **455**(7211), 376–379 (2008). [CrossRef] [PubMed]

7. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature **470**(7334), 369–373 (2011). [CrossRef] [PubMed]

8. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun **1**(3), 21 (2010). [CrossRef] [PubMed]

9. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics **3**(3), 157–162 (2009). [CrossRef]

10. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. **9**(9), 707–715 (2010). [CrossRef] [PubMed]

11. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science **330**(6010), 1510–1512 (2010). [CrossRef] [PubMed]

12. C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. **105**(23), 235501 (2010). [CrossRef] [PubMed]

*etc.*Especially, in 3D magnetic metamaterials, the strong interaction between magnetic resonators leads to magnetic plasmon waves (MPWs) [6

6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature **455**(7211), 376–379 (2008). [CrossRef] [PubMed]

9. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics **3**(3), 157–162 (2009). [CrossRef]

13. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express **14**(15), 6778–6787 (2006). [CrossRef] [PubMed]

*17*-layer metal/dielectric stack on the quartz substrate by using focused ion beam milling (FIB) (FEI Co. USA). Silver and SiO

_{2}are chosen to work as the metallic and dielectric components in the 3D optical metamaterial. An FIB image of the sample is shown in Fig. 1(b). A cross-section of this multilayer fishnet sample is presented in the inset, in which an evident

*17*-layered structure can be observed.

*ω*and

_{p}= 1.37 × 10^{16}rad/s*γ*[14

_{m}= 12.24 × 10^{13}s^{−1}14. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. **97**(24), 243902 (2006). [CrossRef] [PubMed]

*1064nm*marked by the red arrows in Fig. 2(a). This peak corresponds to the first MPW mode with the phase differences through the whole thickness being

*π*. The magnetic field distribution of this MPW mode obtained from numerical simulation is plotted in Fig. 2(b), which gives out the phase relation of the field in the multilayer sample. The wavelength difference of the transmittance peaks between experimental and simulated result is smaller than 10nm, indicating that the sample is able to provide the required properties belonging to the designed model. Additionally, a small peak can also be found at about

*1155nm*pointed by the green arrows in both experimental and stimulated result. This mode correspond to the second MPW with the phase difference equal to

*2π*, which can also be regarded as the second excited spin wave-like mode. Its magnetic field distribution is shown in Fig. 2(c). The observation of such mode can further confirm the MPW properties of the main peak around

*1064nm*, where the following quantum experiment is carried out.

15. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature **418**(6895), 304–306 (2002). [CrossRef] [PubMed]

6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature **455**(7211), 376–379 (2008). [CrossRef] [PubMed]

9. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics **3**(3), 157–162 (2009). [CrossRef]

*0.1%*transmittance at these frequencies. Additionally, if we mill the rectangle holes on the sample, we can obtain the transmittance peak or dip corresponding to the different MPW excitation with the polarization of the incident photons rotating. This method is also efficient to judge whether the MPW is excited in the system.

15. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature **418**(6895), 304–306 (2002). [CrossRef] [PubMed]

16. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. **59**(18), 2044–2046 (1987). [CrossRef] [PubMed]

*50:50*beam splitter from different inputs, the two photons will bunch together in either output of the beam splitter, giving rise to a null coincidence count of the two outputs, if and only if the two photons are identical,

*i.e.*, they are indistinguishable in polarization, spatial, temporal and spectral modes. Classical optical fields can also have a similar destructive interference, but the visibility of the interference has an upper bound of

*50%*[17

17. Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B **6**(1), 100–103 (1989). [CrossRef]

16. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. **59**(18), 2044–2046 (1987). [CrossRef] [PubMed]

17. Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B **6**(1), 100–103 (1989). [CrossRef]

19. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. **68**(16), 2421–2424 (1992). [CrossRef] [PubMed]

20. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. **91**(8), 083601 (2003). [CrossRef] [PubMed]

21. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature **390**(6660), 575–579 (1997). [CrossRef]

22. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. **81**(26), 5932–5935 (1998). [CrossRef]

23. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature **409**(6816), 46–52 (2001). [CrossRef] [PubMed]

*1cm*long KTiOPO

_{4}(KTP) cut for type II spontaneous parametric down-conversion (SPDC) is pumped by a

*532nm*continuous laser to produce a pair of orthogonally polarized photons at

*1064nm,*horizontally (H) and vertically (V) polarized photons. The SPDC photons are divided into two beams by a polarizing beam splitter (PBS). One beam irradiates the 3D optical metamaterial sample and excites the MPWs in it. At the other side of the sample, the MPWs reradiates as photons, which are collected by a single mode fiber. The other beam is directly collected by a single mode fiber. Then the two fibers are coupled into a single mode fiber coupler (Thorlabs) which serves as a

*50:50*beam splitter. The time delay between the two beams can be adjusted by a time delay line (OZ delay line driver) with a single step of

*0.7μm*. The difference of the location of coincidence dips in Fig. 4(a) and Fig. 4(b) is due to the thickness of

*0.5mm*SiO

_{2}substrate. Together with the careful modulation of polarization controller, the best overlap of the two beams can be achieved. After the coupler, the photons are detected by two silicon APDs (Perkin Elmer). The coincidence measurement is performed by using a photon correlator card (DPC-230, Becker & Hickl GmbH), with the coincidence time window of

*3ns*. To get a better visibility we use a

*2nm*bandwidth interference filter IF1 centered at

*1064nm*before the PBS. We also use two 10nm bandwidth interference filters IF2 centered at

*1064nm*before the fiber couplers to block the background light.

*86 ± 6.0%*, which means that the reradiated photons from the sample also presents the quantum property of the two-photon interference. Moreover, the profile of the coincidence curve is almost the same as that of the free space in Fig. 4(a). This indicates the almost complete survival of the quantum property in the conversion from two-photon state to MPWs to two-photon state. Therefore, the mediated state, MPWs in 3D optical metamaterial, is shown to carry the quantum characteristic, and it could be described in a quantum language, consequently [15

15. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature **418**(6895), 304–306 (2002). [CrossRef] [PubMed]

*k*. By borrowing the concepts of elementary excitation and quasi-particle in Solid State Physics [26], the quantum description of the excitation of the 3D optical metamaterials, the quasi-particle named as ‘meton’, could be introduced. This may be used as an institutive picture of studies on quantum property of such meta-solid. With the aid of the concept of meton, the quantum description of the conversion from photon to meton is much more understandable by using a total Hamiltonian including the interaction information asHere, the third term corresponds to the interaction between meton and photon, and the suffix

*k*and the summation of it are omitted for convenience. The amplitude of coupling coefficient

*η*is determined by the conversion efficiency from photon to meton and also largely influences the total transmittance of the sample [27

27. M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. **101**(19), 190504 (2008). [CrossRef] [PubMed]

## Acknowledgments

## References and links

1. | J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. |

2. | R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science |

3. | J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. |

4. | J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science |

5. | Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. |

6. | J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature |

7. | M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature |

8. | H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun |

9. | N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics |

10. | B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. |

11. | T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science |

12. | C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett. |

13. | S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express |

14. | H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. |

15. | E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature |

16. | C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. |

17. | Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B |

18. | L. Mandel and E. Wolf, |

19. | A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. |

20. | M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. |

21. | D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature |

22. | H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. |

23. | E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature |

24. | J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. |

25. | S. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “The quantum description and stimulated emission radiation of coupled metamaterials,” arxiv: 1101.0733. |

26. | D. Pines, |

27. | M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. |

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(160.3918) Materials : Metamaterials

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: December 16, 2011

Revised Manuscript: February 6, 2012

Manuscript Accepted: February 9, 2012

Published: February 16, 2012

**Citation**

S. M. Wang, S. Y. Mu, C. Zhu, Y. X. Gong, P. Xu, H. Liu, T. Li, S. N. Zhu, and X. Zhang, "Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial," Opt. Express **20**, 5213-5218 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5213

Sort: Year | Journal | Reset

### References

- J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
- R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
- J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
- J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
- Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett.102(25), 253902 (2009). [CrossRef] [PubMed]
- J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
- M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011). [CrossRef] [PubMed]
- H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 21 (2010). [CrossRef] [PubMed]
- N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009). [CrossRef]
- B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
- T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science330(6010), 1510–1512 (2010). [CrossRef] [PubMed]
- C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, “Optical Möbius symmetry in metamaterials,” Phys. Rev. Lett.105(23), 235501 (2010). [CrossRef] [PubMed]
- S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express14(15), 6778–6787 (2006). [CrossRef] [PubMed]
- H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett.97(24), 243902 (2006). [CrossRef] [PubMed]
- E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002). [CrossRef] [PubMed]
- C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987). [CrossRef] [PubMed]
- Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B6(1), 100–103 (1989). [CrossRef]
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
- A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett.68(16), 2421–2424 (1992). [CrossRef] [PubMed]
- M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett.91(8), 083601 (2003). [CrossRef] [PubMed]
- D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997). [CrossRef]
- H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81(26), 5932–5935 (1998). [CrossRef]
- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001). [CrossRef] [PubMed]
- J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett.64(21), 2495–2498 (1990). [CrossRef] [PubMed]
- S. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang, “The quantum description and stimulated emission radiation of coupled metamaterials,” arxiv: 1101.0733.
- D. Pines, Elementary Exictations in Solids (Westview Press, 1999).
- M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett.101(19), 190504 (2008). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.