Propagation beam consideration for 3D THz computed tomography |
Optics Express, Vol. 20, Issue 6, pp. 5817-5829 (2012)
http://dx.doi.org/10.1364/OE.20.005817
Acrobat PDF (1288 KB)
Abstract
In this paper, a model of the beam propagation is developed according to the physical properties of THz waves used in THz computed tomography (CT) scan imaging. This model is first included in an acquisition simulator to observe and estimate the impact of the Gaussian beam intensity profile on the projection sets. Second, the model is introduced in several inversion methods as a convolution filter to perform efficient tomographic reconstructions of simulated and real acquired objects. Results obtained with three reconstruction methods (BFP, SART and OSEM) are compared to the techniques proposed in this paper. We will demonstrate an increase of the overall quality and accuracy of the 3D reconstructions.
© 2011 OSA
1. Introduction
1. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002). [CrossRef]
1. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002). [CrossRef]
6. A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010). [CrossRef]
7. E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010). [CrossRef]
8. S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010). [CrossRef]
9. A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009). [CrossRef]
10. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984). [CrossRef] [PubMed]
11. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982). [CrossRef] [PubMed]
12. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994). [CrossRef] [PubMed]
2. THz computed tomography
2.1. Experimental setup properties
13. A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010). [CrossRef]
2.2. Usual tomographic reconstruction methods
17. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011). [CrossRef] [PubMed]
17. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011). [CrossRef] [PubMed]
10. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984). [CrossRef] [PubMed]
18. R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970). [CrossRef] [PubMed]
12. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994). [CrossRef] [PubMed]
3. From propagation beam modeling to tomographic reconstruction optimizations
3.1. Propagation beam observation and modeling
3.2. Simulated acquisition
3.3. Tomographic reconstruction optimizations
19. A. P. Dhawan, R. M. Rangayyan, and R. Gordon, “Image restoration by Wiener deconvolution in limited-view computed tomography,” Appl. Opt. 24, 4013–4020 (1985). [CrossRef] [PubMed]
4. Results and discussion
4.1. Discussion from simulated acquisition
20. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004). [CrossRef] [PubMed]
4.2. 2D and 3D reconstructions from real acquisitions
5. Conclusion
Acknowledgments
References and links
1. | B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002). [CrossRef] |
2. | S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29, 247–256 (2003). [CrossRef] |
3. | S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys. 37, R1–R36 (2004). [CrossRef] |
4. | M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86, 221107 (2005). [CrossRef] |
5. | X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process. 19, 750–763 (2009). [CrossRef] |
6. | A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B 100, 151–158 (2010). [CrossRef] |
7. | E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun. 283, 2050–2055 (2010). [CrossRef] |
8. | S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys. 108, 054508 (2010). [CrossRef] |
9. | A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun. 282(15), 3055–3058 (2009). [CrossRef] |
10. | A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging 6, 81–94 (1984). [CrossRef] [PubMed] |
11. | L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113–122 (1982). [CrossRef] [PubMed] |
12. | H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging 13, 601–609 (1994). [CrossRef] [PubMed] |
13. | A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010). [CrossRef] |
14. | G. T. Herman, Image Reconstruction From Projections : The Fundamentals of Computerized Tomography (Academic Press, 1980). |
15. | P. Toft, “The Radon Transform : Theory and Implementation,” Ph.D. thesis, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark (1996). |
16. | J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl 69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications. |
17. | B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express 19, 5105–5117 (2011). [CrossRef] [PubMed] |
18. | R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol. 29, 471–481 (1970). [CrossRef] [PubMed] |
19. | A. P. Dhawan, R. M. Rangayyan, and R. Gordon, “Image restoration by Wiener deconvolution in limited-view computed tomography,” Appl. Opt. 24, 4013–4020 (1985). [CrossRef] [PubMed] |
20. | Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004). [CrossRef] [PubMed] |
OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(110.6795) Imaging systems : Terahertz imaging
(110.6955) Imaging systems : Tomographic imaging
ToC Category:
Imaging Systems
History
Original Manuscript: October 18, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: December 5, 2011
Published: February 27, 2012
Citation
B. Recur, J. P. Guillet, I. Manek-Hönninger, J. C. Delagnes, W. Benharbone, P. Desbarats, J. P. Domenger, L. Canioni, and P. Mounaix, "Propagation beam consideration for 3D THz computed tomography," Opt. Express 20, 5817-5829 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-5817
Sort: Year | Journal | Reset
References
- B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett.27, 1312–1314 (2002). [CrossRef]
- S. Wang, B. Ferguson, D. Abbott, and X. C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys.29, 247–256 (2003). [CrossRef]
- S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D: Appl. Phys.37, R1–R36 (2004). [CrossRef]
- M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett.86, 221107 (2005). [CrossRef]
- X. Yin, B. W. H. Ng, B. Ferguson, and D. Abbott, “Wavelet based local tomographic image using terahertz techniques,” Digital Signal Process.19, 750–763 (2009). [CrossRef]
- A. Brahm, M. Kunz, S. Riehemann, G. Notni, and A. Tünnermann, “Volumetric spectral analysis of materials using terahertz-tomography techniques,” Appl. Phys. B100, 151–158 (2010). [CrossRef]
- E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun.283, 2050–2055 (2010). [CrossRef]
- S. Nadar, H. Videlier, D. Coquillat, F. Teppe, and M. Sakowicz, “Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors,” J. Appl. Phys.108, 054508 (2010). [CrossRef]
- A. El Fatimy, J.C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, “Plasma wave field effect transistors as a resonant detector for imaging applications up to one terahertz for terahertz imaging”, Opt. Commun.282(15), 3055–3058 (2009). [CrossRef]
- A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging6, 81–94 (1984). [CrossRef] [PubMed]
- L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging1, 113–122 (1982). [CrossRef] [PubMed]
- H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging13, 601–609 (1994). [CrossRef] [PubMed]
- A. Younus, S. Salort, B. Recur, P. Desbarats, P. Mounaix, J-P. Caumes, and E. Abraham, “3D millimeter wave tomographic scanner for large size opaque object inspection with different refractive index contrasts,” in Millimetre Wave and Terahertz Sensors and Technology III, K.A. Krapels and N.A. Salmon, eds., Proc. SPIE7837, 783709 (2010). [CrossRef]
- G. T. Herman, Image Reconstruction From Projections : The Fundamentals of Computerized Tomography (Academic Press, 1980).
- P. Toft, “The Radon Transform : Theory and Implementation,” Ph.D. thesis, Department of Mathematical Modelling, Section for Digital Signal Processing, Technical University of Denmark (1996).
- J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-Phys. Kl69, 262–277 (1917). In German. An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications.
- B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express19, 5105–5117 (2011). [CrossRef] [PubMed]
- R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography,” J. Theor. Biol.29, 471–481 (1970). [CrossRef] [PubMed]
- A. P. Dhawan, R. M. Rangayyan, and R. Gordon, “Image restoration by Wiener deconvolution in limited-view computed tomography,” Appl. Opt.24, 4013–4020 (1985). [CrossRef] [PubMed]
- Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment : From error visibility to structural similarity,” IEEE Trans. Image Process.13, 600–612 (2004). [CrossRef] [PubMed]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Figures
Fig. 1 | Fig. 2 | Fig. 3 |
Fig. 4 | Fig. 5 | Fig. 6 |
Fig. 7 | Fig. 8 | Fig. 9 |
Fig. 10 | Fig. 11 | Fig. 12 |
Fig. 13 | Fig. 14 | |
OSA is a member of CrossRef.