OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6720–6727
« Show journal navigation

Non-exponential decay of dark localized surface plasmons

Pavel Ginzburg and Anatoly V. Zayats  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6720-6727 (2012)
http://dx.doi.org/10.1364/OE.20.006720


View Full Text Article

Acrobat PDF (1346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the decay of the weakly coupled to radiation (dark) modes of subwavelength plasmonic nanostructures is strongly nonexponential. Their lifetime is overestimated by conventional exponential relaxation time obtained in the standard Markovian approximation. These effects are manifestations of the strong dispersion and near-field feedback. The developed theoretical framework introduces an ensemble of local relaxation degrees of freedom coupled to plasmonic mode in order to describe its decay due to material losses. The macroscopic description of the decay process leads to the specific memory function of the system, evaluated from the modal and material dispersions of the plasmonic nanostructure. Proper knowledge of the relaxation behavior is vital for various applications relying on light-matter interactions of emitters with nanoscale objects, such as fluorescence manipulation, bio-imaging, sensing, spasers, sub-diffraction optics, Raman scattering, and quantum optics.

© 2012 OSA

1. Introduction

Electromagnetic cavities are extensively used for manipulation of light-matter interactions since the original work of Purcell [1

1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

], where the environment was shown to provide significant modification of spontaneous emission rates at radio frequencies. In the optical range, various systems, such as photonic crystals [2

2. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004). [CrossRef] [PubMed]

], pillars [3

3. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69(4), 449–451 (1996). [CrossRef]

], toroidal microcavities [4

4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]

], metal nano-particles [5

5. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004). [CrossRef]

], and metamaterials [6

6. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” e-print arXiv:0910.3981.

9

9. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011). [CrossRef]

] are used for different applications, where manipulation of light emission is required. The recent progress in both fabrication and modeling enabled design of metallic nanometric cavities with precisely controlled optical properties, opening new prospects for interesting practical applications, including sensing [10

10. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009). [CrossRef] [PubMed]

, 11

11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]

], optical trapping [12

12. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]

], cancer imaging and therapy [13

13. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005). [CrossRef] [PubMed]

], plasmonic lasers [14

14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

16

16. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). [CrossRef]

], spasers [17

17. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010). [CrossRef]

] and other active plasmonic components [18

18. J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett. 106(18), 183903 (2011). [CrossRef] [PubMed]

], enhanced nonlinearities [19

19. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999). [CrossRef]

21

21. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett. 35(10), 1551–1553 (2010). [CrossRef] [PubMed]

], control of emission properties [22

22. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007). [CrossRef]

], transformation optics [23

23. A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys. 10(11), 115029 (2008). [CrossRef]

], and many others.

Metal nanoparticles, having negative permittivity at certain frequencies, can support excitations, called localized surface plasmon resonances, even if structures are of subwavelength dimensions [24

24. S. A. Maier, Plasmonics: Fundamentals and Applications, New York, Springer, 2007.

]. The eigenmodes of nanostructures may be estimated using different tools, such as hybridization method [25

25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]

], surface integrals [26

26. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005). [CrossRef]

] or other numerical techniques. The eigen frequencies (resonances) may be tuned using particle-particle coupling [27

27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004). [CrossRef]

], particle elongation [28

28. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007). [CrossRef]

], concavity tuning [29

29. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010). [CrossRef] [PubMed]

], and ultimately by evolutionary methods [30

30. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011). [CrossRef] [PubMed]

], providing possibility to achieve on-demand spectrum of resonance modes. Here we distinguish between bright modes of plasmonic nanoparticles with strong dipolar moment, hence efficiently radiating, and higher-order dark modes, weakly or not at all radiating into the far-field. While bright plasmonic modes may be used for the enhancement of radiation efficiency of emitters, using the so-called optical antenna configurations, dark modes have been proposed for trapping of light signals and for guiding along chains of particles with suppressed far-field losses [31

31. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009). [CrossRef]

]. Dark modes, not being coupled to the far-field radiation, can be excited only in the near-field by closely situated emitters [32

32. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009). [CrossRef] [PubMed]

] or directly using electron beam impact [33

33. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009). [CrossRef] [PubMed]

].

Here we develop a theoretical framework to account for memory effects in plasmonic dark mode decay. We show that the steep dispersion of the nano-cavity eigenmodes together with strong near-field feedback lead to considerable deviations from generally assumed conventional exponential decay law with up to 40% changes in the relaxation time.

2. Exponential versus non-exponential decay laws

3. Theoretical model of the non-exponential decay law

In the presented model, the memory function is introduced by the cavity mode coupling to the ensemble of local oscillators (inset in Fig. 1(a)), accounting for the material losses. In this treatment, the spatial shape of the cavity mode is evaluated by solving classical Maxwell’s equations for lossless case, and the overall stored energy is calculated by the Brillouin formula [40

40. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3(3), 233–245 (1970). [CrossRef]

, 41

41. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett. 101(16), 163902 (2008). [CrossRef] [PubMed]

], taking into account the dispersion of the real part of a material permittivity. This approach is known in quantum mechanical quantization schemes as ‘modes-of-the-universe’ or ‘mode decomposition’ approach and, in principle, may simultaneously include losses and dispersion by introducing an ensemble of local oscillators ([42

42. N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A 73(6), 063808 (2006). [CrossRef]

] and references therein). Here, we separate the loss channel from the dispersion behavior of the real part of the permittivity, maintaining the Kramers–Kronig relation between them. This approach provides direct access to the loss channels without extra need to treat an additional coupling with the real part of the dispersion and solve complex equations for polariton modes of the system. In our model, the particle is divided into a set of infinitesimal volumes, each one contains the absorption degree of freedom represented by a local oscillator. The infinite ensemble of such oscillators will act as the reservoir, which is treated within the Heisnberg-Langevin approach for quantum theory of decay [43

43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).

]. The Hamiltonian of the system, separated into the energy of the free field and the reservoir modes, and the field-reservoir interaction part, is given by
Η^=Η^0+Η^IΗ^0=ω0aa+qωkqkqk;Η^I=kgk(qka+aqk),
(3)
where a(a) and qk(qk) are the creation (annihilation) operators of the cavity and reservoir modes, respectively, and gkis the constant describing the coupling between the field and the reservoir. The formal solution of the equation of motion for the operators, averaged over the reservoir modes (...R), is given by the following integral equation:

a˜(t)=a(t)Reiω0ta˜˙=k(gk20tdt'a˜(t')ei(ω0ωk)(tt')) .
(4)

The conventional decay rate corresponds to the solution of Eq. (4) under the Markovian and Weisskopf-Wigner [43

43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).

] approximation (memory-less exponential process). It may be shown also, thatgk2~εim. Thus, the final equation for the time evolution of the field amplitude which takes into account the memory effects is given by
a˜˙=0tF(tτ)a˜(τ)dτ,
(5)
where

F(t)=ΓC2π0(ω02+γ2ω2+γ2)ω0ωei(ω0ω)tdω  .
(6)

The memory function F(t) is responsible for the time evolution of the field operators. It should be noted, that neither derivations above nor the subsequent analytical solution are relying on the slow variation in time approximation of a˜(t) in Eq. (4), employed in the Weisskopf-Wigner approach.

The solution of Eqs. (5) and 6 may be written in the close integral form using the Laplace transformation and the convolution property:

a(t)=12πa(0)is+ΓC2(ω02+γ2(ω0s)2+γ2)ω0(ω0s)eistds  .
(7)

The asymptotic behavior of the solution can be found by approximating the zero-order of the integrand by Lorenzian function. This will result in an exponential decay law. However, the higher-order contributions of the denominator’s Taylor expansion are adding the oscillatory factor to the exponential decay.

4. Discussion

Assuming macroscopic number of cavity photons, quantum operators may be replaced by classical amplitudes. Figure 2 (a)
Fig. 2 (a) The time evolution of the plasmonic quadrupole mode’s power for different loss parameters in the quasistatic regime. Blue (red) and green (black) lines correspond to the memory-effect-based model (conventional exponential decay) forε=1.5+0.5i and ε=1.5+0.1i, respectively. (b) Deviation of the decay process from the exponential law [log(|a(t)|2)ΓCt]: 4 curves correspond to different material loss parametersεim=[0.5;0.1;0.05;0.01]. Horizontal dashed line y = 0 corresponds to the exponential decay.
shows the time evolution of the mode power for two different material loss parameters. In both cases εr=1.5 was used, corresponding to the quadrupole resonance of the sphere (~350 nm wavelength for Ag) and material losses were varied with εim=0.5 andεim=0.1. As was mentioned above, plasmonic resonances may be tuned by various techniques, and the desired dark modes may be shifted into the infrared part of the spectrum, where relative material losses are smaller. The numerical results (Eq. (7) deviate from the conventional theory. In both cases, nonexponetinal decay has been observed, as was qualitatively predicted in the discussion after Eq. (7). The deviations are more pronounced with the increasing Ohmic losses. For large losses, the lifetime of the dark mode is overestimated by the conventional model by about 40%. To emphasize the deviation from the exponential law, we plotted the log-scale ratio of the numerical result and the exponential law: on this graph the horizontal line y = 0 represents correspondence with the conventional theory (Fig. 2 (b)). As can be seen, pronounced oscillatory behavior is present, manifesting that the decay is not purely exponential.

Bright plasmonic modes may be treated in the similar fashion, distinguishing between radiative and Ohmic losses. Absorption, scattering and extinction cross-sections of silver spheres (material parameters from [44

44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

]) were evaluated using the Mie theory and are depicted in Fig. 3 (a)
Fig. 3 (a) Absorption (red), scattering (blue) and extinction (black) cross-sections for the silver particles with the radii of 50 nm (solid lines) and 20 nm (dashed lines) and permittivity from [44]. (b) The time evolution of the dipolar plasmonic mode’s power: red line corresponds to the standard Weisskopf-Wigner theory; blue line is the full numerical solution using the memory equation. Insert shows the zoomed area of the same curve.
. The extinction of the 50 nm radius sphere is dominated by scattering, while for the 20 nm radius the absorption is the main loss channel. For silver spherical nanoparticles with the radius bigger than 30 nm radiation losses can be considered predominant [39

39. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011). [CrossRef] [PubMed]

].

The decay of bright modes still may be described by Eq. (3) with the local oscillators accounting for material losses are replaced by the free-space radiation modes. The coupling constant, resulting from the interaction HamiltonianΗ^I=dE, is given by gk2=ω02ε0V|d|2cos2θ [43

43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).

], here Vis the quantization volume and d=12πε0εdR3Re(ε)/ωω=ω0 is the effective plasmonic dipole moment [39

39. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011). [CrossRef] [PubMed]

] with R being the sphere radius and θ inclination angle in the spherical coordinate system. The equation of motion for the dipolar plasmonic mode annihilation operator (ad), similar to Eq. (5), is thena˙d(t)=εd3R3(ω02+γ2)2πc3ωp2ω00tdτad(τ)0dωω3ei(ω0ω)(tτ). In this equation, however, the last integral is undefined, meaning that more complicated integration contours for the Laplace transformation [36

36. J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A 38(2), 833–840 (1988). [CrossRef] [PubMed]

] or step-by-step solution, approximating the derivative by finite differences [37

37. C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A 303(5-6), 318–327 (2002). [CrossRef]

] should be used. We employed the latter method for the treatment of the dipolar mode decay behavior. The results are depicted on Fig. 3(b) showing that the numerical solution (blue line) is very close to the conventional Weisskopf-Wigner approach (red-dashed line) and the memory effects are not significant in radiative decay of bright plasmonic modes.

5. Conclusion

The memory effects may also substantially influence the spasing phenomenon. The spasing into the dark modes, yet experimentally demonstrated, is very promising, since it may directly generate strongly confined evanescent modes with almost no leakage in the far-field radiation. The rate equations, conventionally describing the spaser action [17

17. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010). [CrossRef]

] depends only on the actual time, neglecting the memory effects. The latter effects may lead to interesting and important for spasing action phenomena, similar to the effects of the memory of atoms in laser systems which was shown to reduce the laser linewidth below the usual Schawlow-Townes limit [47

47. C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41(11), 6119–6128 (1990). [CrossRef] [PubMed]

].

Acknowledgments

This work has been supported in part by EPSRC (UK). P. Ginzburg acknowledges the Royal Society for Newton International Fellowship and Yad Hanadiv for Rothschild Fellowship. The authors are grateful to Michael Shamis for discussions on numerical aspects.

References and links

1.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

2.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004). [CrossRef] [PubMed]

3.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69(4), 449–451 (1996). [CrossRef]

4.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]

5.

L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004). [CrossRef]

6.

Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” e-print arXiv:0910.3981.

7.

Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010). [CrossRef]

8.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010). [CrossRef] [PubMed]

9.

A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A 84(2), 023807 (2011). [CrossRef]

10.

A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009). [CrossRef] [PubMed]

11.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]

12.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]

13.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005). [CrossRef] [PubMed]

14.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

15.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]

16.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). [CrossRef]

17.

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010). [CrossRef]

18.

J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett. 106(18), 183903 (2011). [CrossRef] [PubMed]

19.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999). [CrossRef]

20.

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev. 2(3), 125–135 (2008). [CrossRef]

21.

P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett. 35(10), 1551–1553 (2010). [CrossRef] [PubMed]

22.

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007). [CrossRef]

23.

A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys. 10(11), 115029 (2008). [CrossRef]

24.

S. A. Maier, Plasmonics: Fundamentals and Applications, New York, Springer, 2007.

25.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]

26.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005). [CrossRef]

27.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004). [CrossRef]

28.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007). [CrossRef]

29.

N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett. 10(4), 1405–1408 (2010). [CrossRef] [PubMed]

30.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett. 11(6), 2329–2333 (2011). [CrossRef] [PubMed]

31.

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009). [CrossRef]

32.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009). [CrossRef] [PubMed]

33.

M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009). [CrossRef] [PubMed]

34.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007). [CrossRef] [PubMed]

35.

L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys. 41(4), 587–631 (1978). [CrossRef]

36.

J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A 38(2), 833–840 (1988). [CrossRef] [PubMed]

37.

C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A 303(5-6), 318–327 (2002). [CrossRef]

38.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.

39.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011). [CrossRef] [PubMed]

40.

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3(3), 233–245 (1970). [CrossRef]

41.

E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett. 101(16), 163902 (2008). [CrossRef] [PubMed]

42.

N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A 73(6), 063808 (2006). [CrossRef]

43.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).

44.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

45.

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett. 94(5), 057403 (2005). [CrossRef] [PubMed]

46.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4(9), 5269–5276 (2010). [CrossRef] [PubMed]

47.

C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41(11), 6119–6128 (1990). [CrossRef] [PubMed]

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 19, 2012
Manuscript Accepted: February 17, 2012
Published: March 7, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Pavel Ginzburg and Anatoly V. Zayats, "Non-exponential decay of dark localized surface plasmons," Opt. Express 20, 6720-6727 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  2. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004). [CrossRef] [PubMed]
  3. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996). [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  5. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004). [CrossRef]
  6. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” e-print arXiv:0910.3981.
  7. Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  8. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010). [CrossRef] [PubMed]
  9. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  10. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  12. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  13. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005). [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  15. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  16. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  17. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010). [CrossRef]
  18. J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011). [CrossRef] [PubMed]
  19. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999). [CrossRef]
  20. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008). [CrossRef]
  21. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010). [CrossRef] [PubMed]
  22. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B24(8), 1968–1980 (2007). [CrossRef]
  23. A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008). [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications, New York, Springer, 2007.
  25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  26. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005). [CrossRef]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  28. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007). [CrossRef]
  29. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010). [CrossRef] [PubMed]
  30. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011). [CrossRef] [PubMed]
  31. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009). [CrossRef]
  32. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009). [CrossRef] [PubMed]
  33. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009). [CrossRef] [PubMed]
  34. I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007). [CrossRef] [PubMed]
  35. L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978). [CrossRef]
  36. J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988). [CrossRef] [PubMed]
  37. C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002). [CrossRef]
  38. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.
  39. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  40. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970). [CrossRef]
  41. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008). [CrossRef] [PubMed]
  42. N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006). [CrossRef]
  43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  45. I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett.94(5), 057403 (2005). [CrossRef] [PubMed]
  46. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010). [CrossRef] [PubMed]
  47. C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited