## Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations |

Optics Express, Vol. 20, Issue 7, pp. 7716-7725 (2012)

http://dx.doi.org/10.1364/OE.20.007716

Acrobat PDF (2292 KB)

### Abstract

New class of highly nonlinear fibers possessing dispersive characteristics invariant to transverse geometry fluctuations is described. The sensitivity to stochastic core fluctuations is reduced by order of magnitude while maintaining the fiber nonlinear coefficient. The effectiveness of the new highly nonlinear fiber type is demonstrated on stochastically perturbed distant-band mixer that could not be previously constructed with high-confinement fiber. The new fiber design offers a unique platform for ideally phase matched parametric exchange with significantly increased Brillouin threshold.

© 2012 OSA

## 1. Introduction

3. M. Galili, J. Zu, H. C. Mulvadm, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbits/s demultiplexing,” Opt. Express **17**, 2182–2187 (2009).

5. A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s transmitter and self-tracked demultiplexing receiver using single parametric gate,” IEEE Photon. Technol. Lett. **23**(8), 507–509 (2011). [CrossRef]

6. R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics **4**(10), 690–695 (2010). [CrossRef]

7. B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C.-S. Brès, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK Channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. **29**(4), 516–523 (2011). [CrossRef]

9. A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, and S. Radic, “Performance of self-seeded parametric multicasting of analog signal,” IEEE Photon. Technol. Lett. **23**(21), 1570–1572 (2011). [CrossRef]

10. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. **25**(1), 58–66 (2007). [CrossRef]

12. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron. **15**(1), 103–113 (2009). [CrossRef]

13. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. **27**(3), 364–375 (2009). [CrossRef]

12. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron. **15**(1), 103–113 (2009). [CrossRef]

14. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett. **16**(5), 1292–1294 (2004). [CrossRef]

15. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics **52**(1), 1072–1080 (1995). [CrossRef] [PubMed]

16. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. **10**(5), 1133–1141 (2004). [CrossRef]

17. B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. **29**(4), 410–416 (2011). [CrossRef]

18. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. **35**(19), 3198–3200 (2010). [CrossRef] [PubMed]

17. B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. **29**(4), 410–416 (2011). [CrossRef]

*post-fabrication*correction schemes have been demonstrated. Invariably, they require longitudinal mapping of local dispersion fluctuations [13

13. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. **27**(3), 364–375 (2009). [CrossRef]

19. S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. **20**(23), 1971–1973 (2008). [CrossRef]

*pre-fabrication*measures for HNLF design with inherent resilience to local geometry fluctuation are highly desirable yet remain largely unexplored. Rare attempts to rectify the dispersion fluctuation via unconstrained optimization were driven by purely mathematical formulation and have resulted in index profiles that are either not manufacturable or possessing nonlinear coefficients similar to that of the standard fibers [21

21. L. H. Gabrielli, H. E. Hernández-Figueroa, and H. L. Fragnito, “Robustness optimization of fiber index profiles for optical parametric amplifiers,” J. Lightwave Technol. **27**(24), 5571–5579 (2009). [CrossRef]

*inherently resilient to transverse geometry fluctuation*that is compatible with practical HNLF manufacturing process. The new approach relies on physical optimization of waveguiding in multi-layered fiber geometry. The effectiveness of the new HNLF type is assessed by the efficiency of the distant-band parametric mixer. In this regime, the phase-matching requires negative fourth-order dispersion to achieve gain projection to a pair of GHz-wide windows separated by 100-THz. This regime defines the most sensitive FPM process to

*localized*dispersion fluctuation, and is the singular reason for the absence of HNLF-based device.

## 2. Dispersion fluctuation tolerance for narrow-band parametric amplification

*ω*is launched to silica fiber, an efficient parametric amplification (conversion) occurs within the phase-matching window, defined by:where

_{P}*γ*and

*P*denote the nonlinear coefficient of the fiber and peak pump power. The spectral dependency of the parametric gain is defined by the linear phase-mismatch term ∆

_{P}*β*. In silica, the phase mismatch is described with sufficient accuracy by the second- and the fourth-order dispersion

*β*

_{2}and

*β*

_{4}terms:

*β*

_{4}, it is possible to achieve strong spectral localization of the parametric process: instead of producing a contiguous gain band in immediate pump vicinity, parametric amplification (conversion) only occurs in a pair of narrow spectral windows [15

15. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics **52**(1), 1072–1080 (1995). [CrossRef] [PubMed]

16. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. **10**(5), 1133–1141 (2004). [CrossRef]

*ω*(defined relative to the pump frequency) and the bandwidth

_{S}*δω*of the gain (conversion) window are approximated by the following expressions [16

16. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. **10**(5), 1133–1141 (2004). [CrossRef]

*β*

_{3}and

*ω*

_{0}represent the third-order dispersion and the zero-dispersion frequency (ZDF) of the fiber.

22. J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable parametric all-fiber short-wavelength IR transmitter,” J. Lightwave Technol. **28**(4), 443–447 (2010). [CrossRef]

*along the entire length of the mixing fiber*. The importance of the distributed dispersion uniformity can be demonstrated by a gain model incorporating random dispersion fluctuation [23

23. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express **12**(1), 136–142 (2004). [CrossRef] [PubMed]

*δβ*

_{2}to the mean second-order dispersion:where

*p*is a zero-mean Gaussian random variable with standard deviation of

*σ*. The perturbation in Eq. (5) corresponds to a random process with ensemble-wise Gaussian statistics of

_{b}*N*(0,

*σ*) and an auto-correlation

_{b}*σ*

_{b}^{2}exp(-∆

*z*/

*L*), with

_{c}*L*corresponding to the correlation length of the random fluctuation. Physically, this means that the main effect of the random fluctuations along the fiber length is ZDF shift, rather than change in dispersive characteristic curvature. Indeed, it is recognized that the influence of second-order dispersion perturbation to a particular FOPA configuration depends on the mean dispersion

_{c}*β*

_{2}and

*β*

_{4}, and nonlinear interaction strength

*γP*.

_{P}*f,*defined as the ratio of the fluctuation of the gain peak frequency and the mean bandwidth of the gain window. Using Eq. (3) and (4) with the assumption that the perturbation

*δβ*

_{2}is a small fraction of the mean second-order dispersion

*f*can be expressed as follows:

*f*below 3.38(

*γP*)

_{P}L^{-0.454}is required at a correlation length of 1m in order to attain

*half of the unperturbed gain level*. A practical illustration can be defined by

*γP*= (0.01/Wm) × (10W);

_{P}*β*

_{4}= −10

^{−4}ps

^{4}/km;

*λ*= 1550 nm;

_{P}*λ*= 2000nm, dictating that the HNLF dispersion (

_{S}*D*) be maintained within 5 × 10

^{−3}ps/nm/km range. Unfortunately, this stringent requirement also poses an insurmountable challenge with HNLF transverse geometry control during the fabrication process.

12. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron. **15**(1), 103–113 (2009). [CrossRef]

**15**(1), 103–113 (2009). [CrossRef]

^{−3}ps/nm/km to a typical high-confinement fiber requires core radius control accuracy better than 196 pm. Unfortunately, this scale is also comparable to the radius of a silicon atom (111 pm), and much smaller than the silica Si-O molecular ring (600 pm) that forms the glass matrix. Even though contemporary fiber fabrication techniques have allowed dispersion stability for approaching 0.05 ps/nm/km levels in special cases [12

**15**(1), 103–113 (2009). [CrossRef]

## 3. Geometric-variation desensitized fiber design

*D*indicates material,

_{M}*D*is waveguide and

_{W}*D*is the cross-term contribution. When expanded using standard normalized notation, the dispersion terms are expressed as [24]:

_{MW}*a*,

*n*

_{1}and

*n*are the core diameter, core index and cladding index of a fiber respectively. The effective index experienced by the mode field is denoted as

_{c}*n*., while parameters

_{eff}*V*and

*b*indicate normalized frequency and propagation constant, respectively. Since the index contrast is limited to few percents by a Rayleigh-scattering limit, variation in material dispersion is considered insignificant [25

25. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. **9**(5), 561–566 (1991). [CrossRef]

13. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. **27**(3), 364–375 (2009). [CrossRef]

*a*

_{1}, ∆

*n*

_{1}) defining the field-confinement characteristics, an outer core (

*a*

_{2}, ∆

*n*

_{2}) serving to stabilize the dispersion profile, an intermediate cladding layer (

*a*

_{3}, ∆

*n*

_{3}) which supports guiding for both cores, and the outer cladding providing mainly the mechanical support. The underlying principle of the new design can be understood by noting that the beam waist of the confined optical field depends on its wavelength. Furthermore, the direction of dispersion shift is reversed in the region with

*V*-number below the dispersion minimum point (Fig. 3(c)). The double-core geometry then serves to impose different guiding regime to the short- and long-wavelength components of the optical field by utilizing the dependence of beam waist on wavelength: optical field with shorter wavelength (higher

*V*-number) will experience guiding by the inner core with the outer core acting as the cladding, whereas the long-wavelength beam is confined collectively by the core layers, and bounded by the cladding layers. The disparity between the guiding characteristics in these two regimes results in a double-dip dispersion profile, as shown in Fig. 5 . When the profile is stretched radially, the saddle region sandwiched between two depressions will see an opposite dispersion shift being exerted by the two guiding regimes, thereby reducing the net dispersion shift. As demonstrated in Fig. 5 (b) and (c), the outer core radius and index contrast provide a comprehensive control mechanism that can be used to center the saddle dispersive region and minimize the dispersion fluctuation. Indeed, the desired waveguide dispersion can be obtained by adjusting the index contrast,

*while radial trimming will control the extent of dispersion fluctuation and shift the frequency range where the saddle region is situated*.

^{2}(24.7 μm

^{2}) at 1550-nm (2000-nm) wavelength, versus 11.3 μm

^{2}(16.5 μm

^{2}) for the conventional HNLF design. The nonlinear coefficients (

*γ*) at 1550 nm, calculated with consideration of the glass composition [27

27. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. **20**(22), 2279–2284 (1995). [CrossRef] [PubMed]

^{−1}km

^{−1}for the new and conventional design examples respectively. The new design maintained single-mode operation within the telecom band, characterized by a cut-off wavelength at 1480nm. While the example design allows higher-order mode (LP

_{11}) to propagate at short wavelength, the large index contrast (> 0.01) between the fundamental (LP

_{01}) and higher-order mode over the band from 1100 nm to 1480 nm guarantee negligible mode coupling within the operating band (1200 to 2000 nm) of a parametric mixer pumped by telecom-band lasers

*P*and wavelengths

_{P}*λ*(listed in Fig. 7) were chosen to produce 20-dB of gain centered at 2-μm wavelength in the absence of geometry fluctuations. The benefit of the new design is evident: the new fiber attained 17-dB higher average gain, despite under a more stringent condition due to the fact that the gain window produced by the new fiber was 3.6 times narrower than that by the conventional fiber. When compared in terms of yield, all realizations of the new fiber design produced gain above the half-ideal-gain benchmark, whereas no fiber designed using the conventional approach attained the comparable level of performance.

_{P}## 4. Conclusion

29. P. Kylemark, J. Ren, Y. Myslivets, N. Alic, S. Radic, P. A. Andrekson, and M. Karlsson, “Impact of pump phase-modulation on the bit-error rate in fiber-optical parametric-amplifier-based systems,” IEEE Photon. Technol. Lett. **19**(1), 79–81 (2007). [CrossRef]

## References and links

1. | S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron. |

2. | M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature |

3. | M. Galili, J. Zu, H. C. Mulvadm, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbits/s demultiplexing,” Opt. Express |

4. | S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. (to appear). |

5. | A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s transmitter and self-tracked demultiplexing receiver using single parametric gate,” IEEE Photon. Technol. Lett. |

6. | R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics |

7. | B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C.-S. Brès, S. Moro, F. Gholami, A. Peric, N. Alic, and S. Radic, “Transmission of 640-Gb/s RZ-OOK Channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. |

8. | H. Sunnerud, S. Oda, J. Yang, T. Nishitani, and P. A. Andrekson, “Optical add-drop multiplexer based on fiber optical parametric amplification,” in Proc. ECOC 2007, paper 5.3.5. |

9. | A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, and S. Radic, “Performance of self-seeded parametric multicasting of analog signal,” IEEE Photon. Technol. Lett. |

10. | R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. |

11. | F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Proc. OFC/NFOEC 2011, paper OThC6, 2011. |

12. | M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron. |

13. | E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. |

14. | F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett. |

15. | M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics |

16. | M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. |

17. | B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. |

18. | A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. |

19. | S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. |

20. | E. Myslivets, C. Lundström, S. Moro, A. O. J. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Dispersion fluctuation equalization nonlinear fibers of spatially controlled tension,” in Proc. OFC/NFOEC 2010, paper OTuA5, 2010. |

21. | L. H. Gabrielli, H. E. Hernández-Figueroa, and H. L. Fragnito, “Robustness optimization of fiber index profiles for optical parametric amplifiers,” J. Lightwave Technol. |

22. | J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable parametric all-fiber short-wavelength IR transmitter,” J. Lightwave Technol. |

23. | M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express |

24. | L. B. Jeunhomme, |

25. | V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, and S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. |

26. | A. Snyder and J. D. Love, |

27. | T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. |

28. | A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E |

29. | P. Kylemark, J. Ren, Y. Myslivets, N. Alic, S. Radic, P. A. Andrekson, and M. Karlsson, “Impact of pump phase-modulation on the bit-error rate in fiber-optical parametric-amplifier-based systems,” IEEE Photon. Technol. Lett. |

**OCIS Codes**

(060.2280) Fiber optics and optical communications : Fiber design and fabrication

(190.4975) Nonlinear optics : Parametric processes

**ToC Category:**

Fiber Optics and Optical Communications

**History**

Original Manuscript: January 4, 2012

Revised Manuscript: February 29, 2012

Manuscript Accepted: March 1, 2012

Published: March 20, 2012

**Citation**

Bill P.-P. Kuo and Stojan Radic, "Highly nonlinear fiber with dispersive characteristic invariant to fabrication fluctuations," Opt. Express **20**, 7716-7725 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7716

Sort: Year | Journal | Reset

### References

- S. Radic, C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron. E88-C, 859–869 (2005).
- M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
- M. Galili, J. Zu, H. C. Mulvadm, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbits/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
- S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. (to appear).
- A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, S. Radic, “640-Gb/s transmitter and self-tracked demultiplexing receiver using single parametric gate,” IEEE Photon. Technol. Lett. 23(8), 507–509 (2011). [CrossRef]
- R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010). [CrossRef]
- B. P.-P. Kuo, E. Myslivets, A. O. J. Wiberg, S. Zlatanovic, C.-S. Brès, S. Moro, F. Gholami, A. Peric, N. Alic, S. Radic, “Transmission of 640-Gb/s RZ-OOK Channel over 100-km SSMF by wavelength-transparent conjugation,” J. Lightwave Technol. 29(4), 516–523 (2011). [CrossRef]
- H. Sunnerud, S. Oda, J. Yang, T. Nishitani, and P. A. Andrekson, “Optical add-drop multiplexer based on fiber optical parametric amplification,” in Proc. ECOC 2007, paper 5.3.5.
- A. O. J. Wiberg, C.-S. Brès, A. Danicic, E. Myslivets, S. Radic, “Performance of self-seeded parametric multicasting of analog signal,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011). [CrossRef]
- R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25(1), 58–66 (2007). [CrossRef]
- F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P.-P. Kuo, C.-S. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Proc. OFC/NFOEC 2011, paper OThC6, 2011.
- M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, “Silica-based highly nonlinear fiber and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009). [CrossRef]
- E. Myslivets, N. Alic, J. R. Windmiller, S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009). [CrossRef]
- F. Yaman, Q. Lin, S. Radic, G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett. 16(5), 1292–1294 (2004). [CrossRef]
- M. Yu, C. J. McKinstrie, G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 1072–1080 (1995). [CrossRef] [PubMed]
- M. E. Marhic, K. K.-Y. Wong, L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004). [CrossRef]
- B. P.-P. Kuo, N. Alic, P. F. Wysocki, S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. 29(4), 410–416 (2011). [CrossRef]
- A. Gershikov, E. Shumakher, A. Willinger, G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35(19), 3198–3200 (2010). [CrossRef] [PubMed]
- S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008). [CrossRef]
- E. Myslivets, C. Lundström, S. Moro, A. O. J. Wiberg, C.-S. Brès, N. Alic, P. A. Andrekson, and S. Radic, “Dispersion fluctuation equalization nonlinear fibers of spatially controlled tension,” in Proc. OFC/NFOEC 2010, paper OTuA5, 2010.
- L. H. Gabrielli, H. E. Hernández-Figueroa, H. L. Fragnito, “Robustness optimization of fiber index profiles for optical parametric amplifiers,” J. Lightwave Technol. 27(24), 5571–5579 (2009). [CrossRef]
- J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, S. Radic, “Tunable parametric all-fiber short-wavelength IR transmitter,” J. Lightwave Technol. 28(4), 443–447 (2010). [CrossRef]
- M. Farahmand, M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004). [CrossRef] [PubMed]
- L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications (Dekker, New York, 1990).
- V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh, S. I. Miroshnichenko, “A single-mode fiber with chromatic dispersion varying along the length,” J. Lightwave Technol. 9(5), 561–566 (1991). [CrossRef]
- A. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, London, 2000).
- T. Kato, Y. Suetsugu, M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20(22), 2279–2284 (1995). [CrossRef] [PubMed]
- A. Wada, T. Nozawa, T.-O. Tsun, R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).
- P. Kylemark, J. Ren, Y. Myslivets, N. Alic, S. Radic, P. A. Andrekson, M. Karlsson, “Impact of pump phase-modulation on the bit-error rate in fiber-optical parametric-amplifier-based systems,” IEEE Photon. Technol. Lett. 19(1), 79–81 (2007). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.